【題目】已知表1和表2是某年部分日期的天安門(mén)廣場(chǎng)升旗時(shí)刻表:
表1:某年部分日期的天安門(mén)廣場(chǎng)升旗時(shí)刻表
日期 | 升旗時(shí)刻 | 日期 | 升旗時(shí)刻 | 日期 | 升旗時(shí)刻 | 日期 | 升旗時(shí)刻 |
1月1日 | 7:36 | 4月9日 | 5:46 | 7月9日 | 4:53 | 10月8日 | 6:17 |
1月21日 | 7:11 | 4月28日 | 5:19 | 7月27日 | 5:07 | 10月26日 | 6:36 |
2月10日 | 7:14 | 5月16日 | 4:59 | 8月14日 | 5:24 | 11月13日 | 6:56 |
3月2日 | 6:47 | 6月3日 | 4:47 | 9月2日 | 5:42 | 12月1日 | 7:16 |
3月22日 | 6:15 | 6月22日 | 4:46 | 9月20日 | 5:50 | 12月20日 | 7:31 |
表2:某年1月部分日期的天安門(mén)廣場(chǎng)升旗時(shí)刻表
日期 | 升旗時(shí)刻 | 日期 | 升旗時(shí)刻 | 日期 | 升旗時(shí)刻 |
2月1日 | 7:23 | 2月11日 | 7:13 | 2月21日 | 6:59 |
2月3日 | 7:22 | 2月13日 | 7:11 | 2月23日 | 6:57 |
2月5日 | 7:20 | 2月15日 | 7:08 | 2月25日 | 6:55 |
2月7日 | 7:17 | 2月17日 | 7:05 | 2月27日 | 6:52 |
2月9日 | 7:15 | 2月19日 | 7:02 | 2月28日 | 6:49 |
(1)從表1的日期中隨機(jī)選出一天,試估計(jì)這一天的升旗時(shí)刻早于7:00的概率;
(2)甲、乙二人各自從表2的日期中隨機(jī)選擇一天觀看升旗,且兩人的選擇相互獨(dú)立,記為這兩人中觀看升旗的時(shí)刻早于7:00的人數(shù),求的 分布列和數(shù)學(xué)期望;
(3)將表1和表2的升旗時(shí)刻化為分?jǐn)?shù)后作為樣本數(shù)據(jù)(如7:31化為),記表2中所有升旗時(shí)刻對(duì)應(yīng)數(shù)據(jù)的方差為,表1和表2中所有升旗時(shí)刻對(duì)應(yīng)數(shù)據(jù)的方差為,判斷與的大。ㄖ恍鑼(xiě)出結(jié)論).
【答案】(1)(2)見(jiàn)解析(3)
【解析】試題分析:(Ⅰ)在表的個(gè)日期中,有個(gè)日期的升旗時(shí)刻早于,根據(jù)古典概型概率公式可估計(jì)這一天的升旗時(shí)刻早于的概率 ;(Ⅱ) 可能的取值為,根據(jù)對(duì)立事件與獨(dú)立事件的概率公式求出各隨機(jī)變量對(duì)應(yīng)的概率,從而可得分布列,進(jìn)而利用期望公式可得的數(shù)學(xué)期望;(Ⅲ)觀察表格數(shù)據(jù)可得,表中所有升旗時(shí)刻對(duì)應(yīng)數(shù)據(jù)較分散,可得.
試題解析:(Ⅰ)記事件A為“從表1的日期中隨機(jī)選出一天,這一天的升旗時(shí)刻早于”,
在表1的20個(gè)日期中,有15個(gè)日期的升旗時(shí)刻早于7:00,
所以 .
(Ⅱ)X可能的取值為.
記事件B為“從表2的日期中隨機(jī)選出一天,這一天的升旗時(shí)刻早于7:00”,
則 , .
; ;
.
所以 X 的分布列為:
X | 0 | 1 | 2 |
P |
.
(Ⅲ).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱中,底面,,,分別是棱,的中點(diǎn),為棱上的一點(diǎn),且//平面.
(1)求的值;
(2)求證:;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】無(wú)窮數(shù)列滿足: 為正整數(shù),且對(duì)任意正整數(shù), 為前項(xiàng), , , 中等于的項(xiàng)的個(gè)數(shù).
(Ⅰ)若,請(qǐng)寫(xiě)出數(shù)列的前7項(xiàng);
(Ⅱ)求證:對(duì)于任意正整數(shù),必存在,使得;
(Ⅲ)求證:“”是“存在,當(dāng)時(shí),恒有 成立”的充要條件。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2017·太原三模)已知等比數(shù)列{an}的各項(xiàng)均為不等于1的正數(shù),數(shù)列{bn}滿足bn=lgan,b3=18,b6=12,則數(shù)列{bn}的前n項(xiàng)和的最大值為( )
A. 126 B. 130 C. 132 D. 134
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)M(﹣1,0),N(1,0),曲線E上任意一點(diǎn)到點(diǎn)M的距離均是到點(diǎn)N的距離的倍.
(1)求曲線E的方程;
(2)已知m≠0,設(shè)直線:x﹣my﹣1=0交曲線E于A,C兩點(diǎn),直線:mx+y﹣m=0交曲線E于B,D兩點(diǎn),若CD的斜率為﹣1時(shí),求直線CD的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖矩形中, .點(diǎn)在邊上, 且, 沿直線向上折起成.記二面角的平面角為,當(dāng) 時(shí),
①存在某個(gè)位置,使;
②存在某個(gè)位置,使;
③任意兩個(gè)位置,直線和直線所成的角都不相等.
以上三個(gè)結(jié)論中正確的序號(hào)是
A. ① B. ①② C. ①③ D. ②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知四棱錐 中,
.
(1)證明:頂點(diǎn)在底面的射影為邊的中點(diǎn);
(2)點(diǎn)在上,且,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)設(shè).
①若函數(shù)在處的切線過(guò)點(diǎn),求的值;
②當(dāng)時(shí),若函數(shù)在上沒(méi)有零點(diǎn),求的取值范圍.
(2)設(shè)函數(shù),且,求證: 當(dāng)時(shí),.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正項(xiàng)等比數(shù)列{an}(n∈N*),首項(xiàng)a1=3,前n項(xiàng)和為Sn,且S3+a3、S5+a5,S4+a4成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{nan}的前n項(xiàng)和為Tn,若對(duì)任意正整數(shù)n,都有Tn∈[a,b],求b-a的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com