已知函數(shù),
(1)求函數(shù)的最大值和最小值;
(2)設(shè)函數(shù)上的圖象與軸的交點(diǎn)從左到右分別為,圖象的最高點(diǎn)為,
的夾角的余弦.
(1)1,-1;(2).

試題分析:(1)先利用兩角和的正弦公式化簡(jiǎn)表達(dá)式,再求最大值和最小值;(2)通過(guò)解三角方程解出的值,即得到點(diǎn)的坐標(biāo),通過(guò)解方程得到最高點(diǎn)的坐標(biāo),所以可以得到的坐標(biāo),再通過(guò)夾角公式求出夾角的余弦值.
試題解析:(1),    3分
,∴
∴函數(shù)的最大值和最小值分別為1,-1.        5分
(2)解法1:令.   6分
,∴,∴   8分
,且,∴   9分
,    10分
.      12分
解法2:過(guò)點(diǎn)軸于,則    6分
由三角函數(shù)的性質(zhì)知, ,    8分
由余弦定理得.   12分
解法3:過(guò)點(diǎn)軸于,則    6分
由三角函數(shù)的性質(zhì)知,.   8分
中,.   10分
平分,
.   12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,某市準(zhǔn)備在一個(gè)湖泊的一側(cè)修建一條直路,另一側(cè)修建一條觀光大道,它的前一段是以為頂點(diǎn),軸為對(duì)稱軸,開(kāi)口向右的拋物線的一部分,后一段是函數(shù),時(shí)的圖象,圖象的最高點(diǎn)為,,垂足為.

(1)求函數(shù)的解析式;
(2)若在湖泊內(nèi)修建如圖所示的矩形水上樂(lè)園,問(wèn):點(diǎn)落在曲線上何處時(shí),水上樂(lè)園的面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)求的最小正周期;
(Ⅱ)當(dāng)時(shí),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

中,角所對(duì)的邊分別為,已知,
(Ⅰ)求的大;
(Ⅱ)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知方程上有兩個(gè)不同的解、,則下列結(jié)論正確的是(   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知函數(shù),則下列結(jié)論正確的是 (   )
A.函數(shù)的圖象關(guān)于直線對(duì)稱
B.函數(shù)的最大值為
C.函數(shù)在區(qū)間上是增函數(shù)
D.函數(shù)的最小正周期為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)函數(shù),
(I)求函數(shù)上的最大值與最小值;
(II)若實(shí)數(shù)使得對(duì)任意恒成立,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知,且為第三象限角,求的值
(2)求值:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知,則(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案