【題目】從某工廠生產(chǎn)的某種產(chǎn)品中抽取1000件,測(cè)量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,由測(cè)量結(jié)果得如下頻率分布直方圖:

(1)求這1000件產(chǎn)品質(zhì)量指標(biāo)值的樣本平均數(shù)和樣本方差(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表)

(2)由頻率分布直方圖可以認(rèn)為,這種產(chǎn)品的質(zhì)量指標(biāo)值服從正態(tài)分布,其中以近似為樣本平均數(shù),近似為樣本方差

(ⅰ)利用該正態(tài)分布,求

(ⅱ)某用戶從該工廠購(gòu)買(mǎi)了100件這種產(chǎn)品,記表示這100件產(chǎn)品中質(zhì)量指標(biāo)值為于區(qū)間(127.6,140)的產(chǎn)品件數(shù),利用(ⅰ)的結(jié)果,求

附:.若,則

【答案】(1)平均數(shù)=140;(2)(ⅰ)0.3413(ⅱ)見(jiàn)解析

【解析】

(1)由頻率分布直方圖中的數(shù)據(jù)結(jié)合平均數(shù)和方差公式直接計(jì)算即可;(2)(ⅰ)由(1)中數(shù)據(jù)知,計(jì)算出答案即可;(ⅱ)依題意知服從二項(xiàng)分布,由二項(xiàng)分布的直接計(jì)算即可.

(1)抽取產(chǎn)品的質(zhì)量指標(biāo)值的樣本平均數(shù)和樣本方差分別為

(2)(。┯桑1)知,,

從而

(ⅱ)由(。┲,一件產(chǎn)品的質(zhì)量指標(biāo)值位于區(qū)間的概率為,

依題意知服從二項(xiàng)分布,

所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的幾何體中,四邊形是菱形, 是矩形,平面平面, , , , 的中點(diǎn).

(1)求證: 平面;

(2)在線段上是否存在點(diǎn),使二面角的大小為?若存在,求出的長(zhǎng),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年為我國(guó)改革開(kāi)放40周年,某事業(yè)單位共有職工600人,其年齡與人數(shù)分布表如下:

年齡段

人數(shù)(單位:人)

180

180

160

80

約定:此單位45歲~59歲為中年人,其余為青年人,現(xiàn)按照分層抽樣抽取30人作為全市慶祝晚會(huì)的觀眾.

(1)抽出的青年觀眾與中年觀眾分別為多少人?

(2)若所抽取出的青年觀眾與中年觀眾中分別有12人和5人不熱衷關(guān)心民生大事,其余人熱衷關(guān)心民生大事.完成下列列聯(lián)表,并回答能否有的把握認(rèn)為年齡層與熱衷關(guān)心民生大事有關(guān)?

熱衷關(guān)心民生大事

不熱衷關(guān)心民生大事

總計(jì)

青年

12

中年

5

總計(jì)

30

(3)若從熱衷關(guān)心民生大事的青年觀眾(其中1人擅長(zhǎng)歌舞,3人擅長(zhǎng)樂(lè)器)中,隨機(jī)抽取2人上臺(tái)表演節(jié)目,則抽出的2人能勝任才藝表演的概率是多少?

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.己知

點(diǎn)的極坐標(biāo)為,曲線的極坐標(biāo)方程為,曲線的參數(shù)方程為,為參數(shù)).曲線和曲線相交于兩點(diǎn).

(1)求點(diǎn)的直角坐標(biāo);

(2)求曲線的直角坐標(biāo)方程和曲線的普通方程;

(3)求的面枳,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了調(diào)查某品牌飲料的某種食品添加劑是否超標(biāo),現(xiàn)對(duì)該品牌下的兩種飲料一種是碳酸飲料含二氧化碳,另一種是果汁飲料不含二氧化碳進(jìn)行檢測(cè),現(xiàn)隨機(jī)抽取了碳酸飲料、果汁飲料各10均是組成的一個(gè)樣本,進(jìn)行了檢測(cè),得到了如下莖葉圖根據(jù)國(guó)家食品安全規(guī)定當(dāng)該種添加劑的指標(biāo)大于毫克為偏高,反之即為正常.

1)依據(jù)上述樣本數(shù)據(jù),完成下列列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為食品添加劑是否偏高與是否含二氧化碳有關(guān)系?

正常

偏高

合計(jì)

碳酸飲料

果汁飲料

合計(jì)

2)現(xiàn)從食品添加劑偏高的樣本中隨機(jī)抽取2瓶飲料去做其它檢測(cè),求這兩種飲料都被抽到的概率.

參考公式:,其中

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】.

1)若是增函數(shù),求實(shí)數(shù)a的范圍;

2)若上最小值為3,求實(shí)數(shù)a的值;

3)若時(shí)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有甲、乙兩家公司都需要招聘求職者,這兩家公司的聘用信息如下:

甲公司

乙公司

職位

A

B

C

D

職位

A

B

C

D

月薪/元

6000

7000

8000

9000

月薪/元

5000

7000

9000

11000

獲得相應(yīng)職位概率

0.4

0.3

0.2

0.1

獲得相應(yīng)職位概率

0.4

0.3

0.2

0.1

(1)根據(jù)以上信息,如果你是該求職者,你會(huì)選擇哪一家公司?說(shuō)明理由;

(2)某課外實(shí)習(xí)作業(yè)小組調(diào)查了1000名職場(chǎng)人士,就選擇這兩家公司的意愿做了統(tǒng)計(jì),得到以下數(shù)據(jù)分布:

選擇意愿

人員結(jié)構(gòu)

40歲以上(含40歲)男性

40歲以上(含40歲)女性

40歲以下男性

40歲以下女性

選擇甲公司

110

120

140

80

選擇乙公司

150

90

200

110

若分析選擇意愿與年齡這兩個(gè)分類(lèi)變量,計(jì)算得到的K2的觀測(cè)值為k15.5513,測(cè)得出選擇意愿與年齡有關(guān)系的結(jié)論犯錯(cuò)誤的概率的上限是多少?并用統(tǒng)計(jì)學(xué)知識(shí)分析,選擇意愿與年齡變量和性別變量哪一個(gè)關(guān)聯(lián)性更大?

附:

0.050

0.025

0.010

0.005

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在五面體中,四邊形是邊長(zhǎng)為的正方形,平面⊥平面.

(Ⅰ) 求證:;

(Ⅱ) 求證:平面⊥平面

(Ⅲ) 在線段上是否存在點(diǎn),使得⊥平面? 說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)是定義在上的不恒為零的函數(shù),對(duì)于任意實(shí)數(shù)滿足: ,, 考查下列結(jié)論:① ;②為奇函數(shù);③數(shù)列為等差數(shù)列;④數(shù)列為等比數(shù)列.

以上結(jié)論正確的是__________

查看答案和解析>>

同步練習(xí)冊(cè)答案