【題目】已知點(diǎn)是橢圓上任一點(diǎn),點(diǎn)到直線的距離為,到點(diǎn)的距離為,且.直線與橢圓交于不同兩點(diǎn)都在軸上方,且.

1求橢圓的方程;

2當(dāng)為橢圓與軸正半軸的交點(diǎn)時(shí),求直線方程;

3對(duì)于動(dòng)直線,是否存在一個(gè)定點(diǎn),無(wú)論如何變化,直線總經(jīng)過(guò)此定點(diǎn)?若存在,求出該定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】1 2 ;3 直線總經(jīng)過(guò)定點(diǎn).

【解析】

試題分析:1 設(shè),用坐標(biāo)表示條件列出方程化簡(jiǎn)整理可得橢圓的標(biāo)準(zhǔn)方程;21可知,,即可得,由,寫(xiě)出直線的方程與橢圓方程聯(lián)立,求出點(diǎn)的坐標(biāo),由兩點(diǎn)式求直線的方程即可;3,得,設(shè)直線方程為,與橢圓方程聯(lián)立得,由根與系數(shù)關(guān)系計(jì)算,從而得到直線方程為,從而得到直線過(guò)定點(diǎn).

試題解析: 1設(shè),則,,………………1分

,化簡(jiǎn),得,橢圓的方程為.………………3分

2,,………………4分

,,.

代入解,得,………………6分

,.即直線方程為.………………7分

3.

設(shè),直線方程為.代直線方程,得

.………………9分

,,=

,……………11分

直線方程為,

直線總經(jīng)過(guò)定點(diǎn).………………12分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題錯(cuò)誤的是 ( )

A. 如果平面平面,那么平面內(nèi)一定存在直線平行于平面

B. 如果平面不垂直平面,那么平面內(nèi)一定不存在直線垂直于平面

C. 如果平面平面,平面平面,且,那么

D. 如果平面平面,那么平面內(nèi)所有直線都垂直于平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中, 是邊長(zhǎng)為4的正方形.平面⊥平面 .

(1)求證: ⊥平面ABC;

(2)求二面角的余弦值;

(3)證明:在線段存在點(diǎn),使得,并求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知流程圖如下圖所示,該程序運(yùn)行后,為使輸出的值為16,則循環(huán)體的判斷框內(nèi)①處應(yīng)填( )

A. 2 B. 3 C. 5 D. 7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義的零點(diǎn)的不動(dòng)點(diǎn),已知函數(shù).

Ⅰ.當(dāng)時(shí),求函數(shù)的不動(dòng)點(diǎn);

Ⅱ.對(duì)于任意實(shí)數(shù),函數(shù)恒有兩個(gè)相異的不動(dòng)點(diǎn),求實(shí)數(shù)的取值范圍;

Ⅲ.若函數(shù)只有一個(gè)零點(diǎn)且,求實(shí)數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)).

(1)若函數(shù)有零點(diǎn),求實(shí)數(shù)的取值范圍;

(2)若對(duì)任意的,都有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)生物興趣小組在學(xué)校生物園地種植了一批名貴樹(shù)苗,為了解樹(shù)苗生長(zhǎng)情況,從這批樹(shù)苗中隨機(jī)測(cè)量了其中50棵樹(shù)苗的高度(單位:厘米),把這些高度列成了如下的頻率分布表:

組別

頻數(shù)

2

3

14

15

12

4

(1)在這批樹(shù)苗中任取一棵,其高度在85厘米以上的概率大約是多少?

(2)這批樹(shù)苗的平均高度大約是多少?

(3)為了進(jìn)一步獲得研究資料,若從組中移出一棵樹(shù)苗,從組中移出兩棵樹(shù)苗進(jìn)行試驗(yàn)研究,則組中的樹(shù)苗組中的樹(shù)苗同時(shí)被移出的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),為自然對(duì)數(shù)的底數(shù).

()討論的單調(diào)性;

()若函數(shù)的圖象與直線交于兩點(diǎn),線段中點(diǎn)的橫坐標(biāo)為,證明:(為函數(shù)的導(dǎo)函數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在多面體中,四邊形是邊長(zhǎng)均為的正方形,四邊形是直角梯形,,且

(1)求證:平面平面

(2)若,求四棱錐的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案