(本小題滿分12分)
已知點(diǎn)A,橢圓E:的離心率為;F是橢圓E的右焦點(diǎn),直線AF的斜率為,O為坐標(biāo)原點(diǎn)
(I)求E的方程;
(II)設(shè)過點(diǎn)A的動(dòng)直線與E 相交于P,Q兩點(diǎn)。當(dāng)的面積最大時(shí),求的直線方程.
(I);(II).

試題分析:(I)由直線AF的斜率為,可求.并結(jié)合求得,再利用,進(jìn)而可確定橢圓E的方程;(II)依題意直線的斜率存在,故可設(shè)直線方程為,和橢圓方程聯(lián)立得.利用弦長(zhǎng)公式表示,利用點(diǎn)到直線的距離求的高.從而三角形的面積可表示為關(guān)于變量的函數(shù)解析式,再求函數(shù)最大值及相應(yīng)的值,故直線的方程確定.
試題解析:(I)設(shè)右焦點(diǎn),由條件知,,得
,所以,.故橢圓的方程為
(II)當(dāng)軸時(shí)不合題意,故設(shè)直線,
代入.當(dāng),即時(shí),
.從而.又點(diǎn)到直線的距離
,所以的面積.設(shè),則,.因?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140824/20140824053912321526.png" style="vertical-align:middle;" />,當(dāng)且僅當(dāng)時(shí),時(shí)取等號(hào),且滿足.所以,當(dāng)的面積最大時(shí),的方程為
【考點(diǎn)定位】1、橢圓的標(biāo)準(zhǔn)方程及簡(jiǎn)單幾何性質(zhì);2、弦長(zhǎng)公式;3、函數(shù)的最值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在平面直角坐標(biāo)系中,設(shè)橢圓,其中,過橢圓內(nèi)一點(diǎn)的兩條直線分別與橢圓交于點(diǎn),且滿足,,其中為正常數(shù). 當(dāng)點(diǎn)恰為橢圓的右頂點(diǎn)時(shí),對(duì)應(yīng)的.
(1)求橢圓的離心率;
(2)求的值;
(3)當(dāng)變化時(shí),是否為定值?若是,請(qǐng)求出此定值;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(2012•廣東)在平面直角坐標(biāo)系xOy中,已知橢圓C:的離心率,且橢圓C上的點(diǎn)到點(diǎn)Q(0,2)的距離的最大值為3.
(1)求橢圓C的方程;
(2)在橢圓C上,是否存在點(diǎn)M(m,n),使得直線l:mx+ny=1與圓O:x2+y2=1相交于不同的兩點(diǎn)A、B,且△OAB的面積最大?若存在,求出點(diǎn)M的坐標(biāo)及對(duì)應(yīng)的△OAB的面積;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

長(zhǎng)為3的線段AB的端點(diǎn)A、B分別在x軸、y軸上移動(dòng),=2,則點(diǎn)C的軌跡是(  )
A.線段      B.圓        C.橢圓      D.雙曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知線段,的中點(diǎn)為,動(dòng)點(diǎn)滿足為正常數(shù)).
(1)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求動(dòng)點(diǎn)所在的曲線方程;
(2)若,動(dòng)點(diǎn)滿足,且,試求面積的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知實(shí)數(shù)構(gòu)成一個(gè)等比數(shù)列,則圓錐曲線的離心率為(   )
A.B.C.D.或7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

的切線與x軸正半軸,y軸正半軸圍成一個(gè)三角形,當(dāng)該三角形面積最小時(shí),切點(diǎn)為P(如圖).
(1)求點(diǎn)P的坐標(biāo);
(2)焦點(diǎn)在x軸上的橢圓C過點(diǎn)P,且與直線交于A,B兩點(diǎn),若的面積為2,求C的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,為坐標(biāo)原點(diǎn),橢圓的左右焦點(diǎn)分別為,離心率為;雙曲線的左右焦點(diǎn)分別為,離心率為,已知,且.
(1)求的方程;
(2)過點(diǎn)作的不垂直于軸的弦,的中點(diǎn),當(dāng)直線交于兩點(diǎn)時(shí),求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,橢圓上的點(diǎn)M與橢圓右焦點(diǎn)的連線與x軸垂直,且OM(O是坐標(biāo)原點(diǎn))與橢圓長(zhǎng)軸和短軸端點(diǎn)的連線AB平行.
(1)求橢圓的離心率;
(2)過且與AB垂直的直線交橢圓于P、Q,若的面積是20,求此時(shí)橢圓的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案