分析 由三角函數(shù)中的恒等變換應用化簡可得函數(shù)解析式為f(x)=2sin(2x-$\frac{π}{6}$)$-\frac{1}{2}$,由三角函數(shù)的周期性及其求法可求函數(shù)的最小正周期,由-$\frac{π}{2}$+2kπ≤2x-$\frac{π}{6}$≤$\frac{π}{2}$+2kπ,可得-$\frac{π}{6}$+kπ≤x≤$\frac{π}{3}$+kπ,可得f(x)的單調(diào)增區(qū)間,由正弦函數(shù)的圖象和性質即可求得最值.
解答 解:∵f(x)=$\sqrt{3}$sinxcosx-cos(2x+$\frac{π}{3}$)-cos2x
=$\frac{\sqrt{3}}{2}$sin2x-[$\frac{1}{2}$cos2x-$\frac{\sqrt{3}}{2}$sin2x]-$\frac{1+cos2x}{2}$
=$\sqrt{3}$sin2x-cos2x-$\frac{1}{2}$
=2sin(2x-$\frac{π}{6}$)$-\frac{1}{2}$,
∴函數(shù)的最小正周期T=$\frac{2π}{2}=π$.
∴由-$\frac{π}{2}$+2kπ≤2x-$\frac{π}{6}$≤$\frac{π}{2}$+2kπ,可得-$\frac{π}{6}$+kπ≤x≤$\frac{π}{3}$+kπ,可得f(x)的單調(diào)增區(qū)間為[-$\frac{π}{6}$+kπ,$\frac{π}{3}$+kπ](k∈Z),
∴函數(shù)的最大值為$\frac{3}{2}$,最小值為-$\frac{5}{2}$.
點評 本題主要考查了三角函數(shù)中的恒等變換應用,三角函數(shù)的周期性及其求法,正弦函數(shù)的圖象和性質的應用,屬于基本知識的考查.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 30° | B. | 60° | C. | 120° | D. | 150° |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com