設Sn是等比數(shù)列{an}的前n項和,且S3=3,a10+a11+a12=-24,則S6=( 。
A、3B、-6C、-3D、9
考點:等比數(shù)列的通項公式
專題:等差數(shù)列與等比數(shù)列
分析:由等比數(shù)列的性質可得S6-S3,S9-S6,S12-S9仍然構成等比數(shù)列,易得公比q,進而可得S6
解答: 解:由等比數(shù)列的性質可得S6-S3,S9-S6,S12-S9仍然構成等比數(shù)列,設其公比為q,
則q3=
S12-S9
S3
=
a10+a11+a12
S3
=
-24
3
=-8,解得q=-2,
∴S6-S3=S3•q,∴S6=S3+S3•q=3+3×(-2)=-3
故選:C.
點評:本題考查等比數(shù)列的通項公式和性質,屬基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

記關于x的不等式(x+1)(x-a)<0的解集為P,Q={x|0≤x≤2}
(Ⅰ)若a=3,求P;
(Ⅱ)若Q⊆P,求正數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某位同學進行寒假社會實踐活動,為了對白天平均氣溫與某奶茶店的某種飲料銷量之間的關系進行分析研究,他分別記錄了1月11日至1月15日的白天平均氣溫x(°C)與該奶茶店的這種飲料銷量y(杯),得到如下數(shù)據(jù):
日    期1月11日1月12日1月13日1月14日1月15日
平均氣溫x(°C)91012118
銷量y(杯)2325302621
(1)若從這五組數(shù)據(jù)中隨機抽出2組,求抽出的2組數(shù)據(jù)恰好是相鄰2天數(shù)據(jù)的概率;
(2)請根據(jù)所給五組數(shù)據(jù),求出y關于x的線性回歸方程cq=2q-1.
(參考公式:
?
b
=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(xi-
.
x
)
2
,
?
a
=
.
y
-
?
b
.
x
.)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知y=f(x)是R上的偶函數(shù),且f(x)在(-∞,0]上是增函數(shù),若f(a)≥f(2),則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x、y滿足條件
x-y+5≥0
x+y≥0
x≤3.
則2x+4y的最小值為( 。
A、-6B、6C、-12D、12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的焦距為2c(c>0),以O為圓心,a為半徑作圓,過點(
a2
c
,0)作圓的兩條切線互相垂直,則離心率e為( 。
A、
2
2
B、
1
2
C、
3
2
D、
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

執(zhí)行如圖所示的程序框圖,如果輸入的N是5,那么輸出的P是(  )
A、1B、24C、120D、720

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

存在實數(shù)x使得x2+6mx+9m<0成立,則實數(shù)m的取值范圍是( 。
A、(0,1)
B、[0,1]
C、(-∞,0]∪(1,+∞)
D、(-∞,0]∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若存在x∈R,使得x2+2x+m<0成立,則實數(shù)m的取值范圍是( 。
A、(-∞,1]
B、(-∞,1)
C、(1,+∞)
D、[1,+∞)

查看答案和解析>>

同步練習冊答案