如圖,在平面直角坐標(biāo)系xOy中,以O(shè)x軸為始邊做兩個(gè)銳角α,β,它們的終邊分別與單位圓相交于A、B兩點(diǎn),已知A、B的橫坐標(biāo)分別為
3
10
10
,
2
5
5

(1)求tan(α-β)的值; 
(2)求α+β的值.
分析:(1)由題可知cosα,cosβ,由同角三角函數(shù)的基本關(guān)系可得tanα=
1
3
,tanβ=
1
2
,代入兩角差的正切公式可得;(2)由(1)可得tan(α+β)=
1
3
+
1
2
1-
1
6
=1
,再由α+β<
π
2
,可得其值.
解答:解:(1)由題可知:cosα=
3
10
10
,cosβ=
2
5
5
.     (2分)
由于α,β為銳角,則sinα=
10
10
,sinβ=
5
5
(4分)
tanα=
1
3
,tanβ=
1
2

tan(α-β)=
tanα-tanβ
1+tanαtanβ
=
1
3
-
1
2
1+
1
6
=-
1
7
(6分)
(2)∵tan(α+β)=
1
3
+
1
2
1-
1
6
=1
(9分)
sinα=
10
10
2
2
sinβ=
5
5
2
2
,即α+β<
π
2

α+β=
π
4
(12分)
點(diǎn)評(píng):本題考查兩角和與差的正切函數(shù),涉及角的范圍的確定,屬中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△OAB中,點(diǎn)P是線段OB及線段AB延長(zhǎng)線所圍成的陰影區(qū)域(含邊界)的任意一點(diǎn),且
OP
=x
OA
+y
OB
則在直角坐標(biāo)平面內(nèi),實(shí)數(shù)對(duì)(x,y)所示的區(qū)域在直線y=4的下側(cè)部分的面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

1、如圖,在直角坐標(biāo)平面內(nèi)有一個(gè)邊長(zhǎng)為a,中心在原點(diǎn)O的正六邊形ABCDEF,AB∥Ox.直線L:y=kx+t(k為常數(shù))與正六邊形交于M、N兩點(diǎn),記△OMN的面積為S,則函數(shù)S=f(t)的奇偶性為
偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)平面內(nèi)有一個(gè)邊長(zhǎng)為a、中心在原點(diǎn)O的正六邊形ABCDEF,AB∥Ox.直線L:y=kx+t(k為常數(shù))與正六邊形交于M、N兩點(diǎn),記△OMN的面積為S,則函數(shù)S=f(t)的奇偶性為(  )
A、偶函數(shù)B、奇函數(shù)C、不是奇函數(shù),也不是偶函數(shù)D、奇偶性與k有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•海珠區(qū)一模)如圖,在直角坐標(biāo)平面內(nèi),射線OT落在60°的終邊上,任作一條射線OA,OA落在∠x(chóng)OT內(nèi)的概率是
1
6
1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,一定長(zhǎng)m的線段,其端點(diǎn)A、B分別在x軸、y軸上滑動(dòng),設(shè)點(diǎn)M滿足(λ是大于0,且不等于1的常數(shù)).

試問(wèn):是否存在定點(diǎn)E、F,使|ME|、|MB|、|MF|成等差數(shù)列?若存在,求出E、F的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案