極坐標系的極點是直角坐標系的原點,極軸為x軸正半軸.已知曲線C1的極坐標方程為ρ=4cosθ,曲線C2的參數(shù)方程為
x=2+2t
y=
3
-2
3
t
(其中t為參數(shù))
(1)求曲線C1的直角坐標方程和曲線C2的普通方程;
(2)判斷曲線C1和曲線C2的位置關(guān)系;若曲線C1和曲線C2相交,求出弦長.
考點:參數(shù)方程化成普通方程
專題:坐標系和參數(shù)方程
分析:(1)把極坐標方程利用極坐標和直角坐標的互化公式化為直角坐標方程、把參數(shù)方程消去參數(shù),化為直角坐標方程.
(2)利用點到直線的距離公式求得圓心到直線的距離,再利用弦長公式求得弦長.
解答: 解:(1)由ρ=4cosθ 可得ρ2=4ρcosθ,化為直角坐標方程為 x2+y2=4x.
∵曲線C2的參數(shù)方程為
x=2+2t
y=
3
-2
3
t
(其中t為參數(shù)),用代入法消去參數(shù)可得
曲線C2 的普通方程為:
3
x+y-3
3
=0

(2)由(1)得,圓C1的圓心為(2,0),半徑為2,
圓心到直線的距離為d=
|2
3
+0-3
3
|
2
=
3
2
<2
,
所以曲線C1和曲線C2的相交,所求弦長為:2
22-(
3
2
)
2
=
13
點評:本題主要考查把極坐標方程、參數(shù)方程化為直角坐標方程的方法,點到直線的距離公式、弦長公式的應(yīng)用,直線和圓的位置關(guān)系,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=4sinxsin2
π
4
+
x
2
)+cos2x(x∈R).
(1)求函數(shù)f(x)的值域;
(2)若對任意x∈[
π
6
,
3
],都有|f(x)-m|<2成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}的前n項和為Sn,已知S1,S3,S2成等差數(shù)列
(Ⅰ)求{an}的公比q;
(Ⅱ)a1-a3=3,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從1,3,5,7,9五個數(shù)字中選2個,0,2,4,6,8五個數(shù)字中選3個,能組成多少個無重復(fù)數(shù)字的五位偶數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

生產(chǎn)A,B兩種產(chǎn)品,其質(zhì)量按測試指標劃分為:指標大于或等于82為正品,小于82為次品,現(xiàn)隨機抽取這兩種產(chǎn)品各100件進行檢測,檢測結(jié)果統(tǒng)計如下:
測試指標 [70,76) [76,82) [82,88) [88,94) [94,100]
產(chǎn)品A 8 12 40 32 8
產(chǎn)品B 7 18 40 29 6
(Ⅰ)試分別估計產(chǎn)品A、產(chǎn)品B為正品的概率;
(Ⅱ)生產(chǎn)一產(chǎn)品件A,若是正品可盈利50元,若是次品則虧損10元;生產(chǎn)一件產(chǎn)品B,若是正品可盈利100元,若是次品則虧損20元,在(Ⅰ)的前提下:
①求生產(chǎn)5件產(chǎn)品B所獲得的利潤不少于300元的概率;
②求生產(chǎn)1件產(chǎn)品A和1件產(chǎn)品B所得的總利潤為30元或90元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在(0,+∞)上的函數(shù)f(x)滿足:
①當(dāng)x∈[1,3)時,f(x)=
x-1,1≤x≤2
3-x,2<x<3
,
②f(3x)=3f(x),
作出f(x)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
5
5
,點(1,
2
5
5
)在橢圓C上.
(Ⅰ)求橢圓C的方程;
(Ⅱ) 在x軸上是否存在一定點E,使得對橢圓C的任意一條過E的弦AB,
1
|EA|2
+
1
|EB|2
為定值?若存在,求出定點和定值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域是(0,+∞),且當(dāng)x>0時,滿足
f(x)
x
>f′(x).
(Ⅰ)判斷函數(shù)y=
f(x)
x
在(0,+∞)上的單調(diào)性,并說明理由;
(Ⅱ)三個同學(xué)對問題“已知m、n∈N*且n>m≥2,證明(1+m)n>(1+n)m”提出各自的解題思路.
甲說:“用二項式定理將不等式的左右兩邊展開,運用放縮法即可證明”
乙說:“通過轉(zhuǎn)化,構(gòu)造函數(shù),利用函數(shù)的單調(diào)性即可證明”
參考上述解題思路,結(jié)合自己的知識,請你證明此不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線C上的點M(x,y)到定點F(1,0)的距離和它到定直線l:x=5的距離的比是常數(shù)
5
5

(Ⅰ)求曲線C的方程;
(Ⅱ)過F且斜率為1的直線與曲線C相交于A、B兩點.求:
    ①線段AB的中點坐標;     
    ②△OAB的面積.

查看答案和解析>>

同步練習(xí)冊答案