極坐標(biāo)系的極點(diǎn)是直角坐標(biāo)系的原點(diǎn),極軸為x軸正半軸.已知曲線C1的極坐標(biāo)方程為ρ=4cosθ,曲線C2的參數(shù)方程為
x=2+2t
y=
3
-2
3
t
(其中t為參數(shù))
(1)求曲線C1的直角坐標(biāo)方程和曲線C2的普通方程;
(2)判斷曲線C1和曲線C2的位置關(guān)系;若曲線C1和曲線C2相交,求出弦長(zhǎng).
考點(diǎn):參數(shù)方程化成普通方程
專題:坐標(biāo)系和參數(shù)方程
分析:(1)把極坐標(biāo)方程利用極坐標(biāo)和直角坐標(biāo)的互化公式化為直角坐標(biāo)方程、把參數(shù)方程消去參數(shù),化為直角坐標(biāo)方程.
(2)利用點(diǎn)到直線的距離公式求得圓心到直線的距離,再利用弦長(zhǎng)公式求得弦長(zhǎng).
解答: 解:(1)由ρ=4cosθ 可得ρ2=4ρcosθ,化為直角坐標(biāo)方程為 x2+y2=4x.
∵曲線C2的參數(shù)方程為
x=2+2t
y=
3
-2
3
t
(其中t為參數(shù)),用代入法消去參數(shù)可得
曲線C2 的普通方程為:
3
x+y-3
3
=0

(2)由(1)得,圓C1的圓心為(2,0),半徑為2,
圓心到直線的距離為d=
|2
3
+0-3
3
|
2
=
3
2
<2
,
所以曲線C1和曲線C2的相交,所求弦長(zhǎng)為:2
22-(
3
2
)
2
=
13
點(diǎn)評(píng):本題主要考查把極坐標(biāo)方程、參數(shù)方程化為直角坐標(biāo)方程的方法,點(diǎn)到直線的距離公式、弦長(zhǎng)公式的應(yīng)用,直線和圓的位置關(guān)系,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=4sinxsin2
π
4
+
x
2
)+cos2x(x∈R).
(1)求函數(shù)f(x)的值域;
(2)若對(duì)任意x∈[
π
6
3
],都有|f(x)-m|<2成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等比數(shù)列{an}的前n項(xiàng)和為Sn,已知S1,S3,S2成等差數(shù)列
(Ⅰ)求{an}的公比q;
(Ⅱ)a1-a3=3,求Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從1,3,5,7,9五個(gè)數(shù)字中選2個(gè),0,2,4,6,8五個(gè)數(shù)字中選3個(gè),能組成多少個(gè)無(wú)重復(fù)數(shù)字的五位偶數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

生產(chǎn)A,B兩種產(chǎn)品,其質(zhì)量按測(cè)試指標(biāo)劃分為:指標(biāo)大于或等于82為正品,小于82為次品,現(xiàn)隨機(jī)抽取這兩種產(chǎn)品各100件進(jìn)行檢測(cè),檢測(cè)結(jié)果統(tǒng)計(jì)如下:
測(cè)試指標(biāo) [70,76) [76,82) [82,88) [88,94) [94,100]
產(chǎn)品A 8 12 40 32 8
產(chǎn)品B 7 18 40 29 6
(Ⅰ)試分別估計(jì)產(chǎn)品A、產(chǎn)品B為正品的概率;
(Ⅱ)生產(chǎn)一產(chǎn)品件A,若是正品可盈利50元,若是次品則虧損10元;生產(chǎn)一件產(chǎn)品B,若是正品可盈利100元,若是次品則虧損20元,在(Ⅰ)的前提下:
①求生產(chǎn)5件產(chǎn)品B所獲得的利潤(rùn)不少于300元的概率;
②求生產(chǎn)1件產(chǎn)品A和1件產(chǎn)品B所得的總利潤(rùn)為30元或90元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在(0,+∞)上的函數(shù)f(x)滿足:
①當(dāng)x∈[1,3)時(shí),f(x)=
x-1,1≤x≤2
3-x,2<x<3
,
②f(3x)=3f(x),
作出f(x)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
2
5
5
,點(diǎn)(1,
2
5
5
)在橢圓C上.
(Ⅰ)求橢圓C的方程;
(Ⅱ) 在x軸上是否存在一定點(diǎn)E,使得對(duì)橢圓C的任意一條過(guò)E的弦AB,
1
|EA|2
+
1
|EB|2
為定值?若存在,求出定點(diǎn)和定值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)的定義域是(0,+∞),且當(dāng)x>0時(shí),滿足
f(x)
x
>f′(x).
(Ⅰ)判斷函數(shù)y=
f(x)
x
在(0,+∞)上的單調(diào)性,并說(shuō)明理由;
(Ⅱ)三個(gè)同學(xué)對(duì)問(wèn)題“已知m、n∈N*且n>m≥2,證明(1+m)n>(1+n)m”提出各自的解題思路.
甲說(shuō):“用二項(xiàng)式定理將不等式的左右兩邊展開(kāi),運(yùn)用放縮法即可證明”
乙說(shuō):“通過(guò)轉(zhuǎn)化,構(gòu)造函數(shù),利用函數(shù)的單調(diào)性即可證明”
參考上述解題思路,結(jié)合自己的知識(shí),請(qǐng)你證明此不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線C上的點(diǎn)M(x,y)到定點(diǎn)F(1,0)的距離和它到定直線l:x=5的距離的比是常數(shù)
5
5

(Ⅰ)求曲線C的方程;
(Ⅱ)過(guò)F且斜率為1的直線與曲線C相交于A、B兩點(diǎn).求:
    ①線段AB的中點(diǎn)坐標(biāo);     
    ②△OAB的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案