【題目】袋中裝有9只球,其中標(biāo)有數(shù)字1,2,3,4的小球各2個(gè),標(biāo)數(shù)字5的小球有1個(gè).從袋中任取3個(gè)小球,每個(gè)小球被取出的可能性都相等,用表示取出的3個(gè)小球上的最大數(shù)字.

(1)求取出的3個(gè)小球上的數(shù)字互不相同的概率;

(2)求隨機(jī)變量的分布列和期望.

【答案】(1);(2)的分布列見解析;期望是

【解析】

1)先計(jì)算出一次取出的個(gè)小球上有兩個(gè)數(shù)字相同的概率,然后用減去這個(gè)概率,求得取出的3個(gè)小球上的數(shù)字互不相同的概率.(2)所有可能的取值為:2,3,4,5,根據(jù)分類加法計(jì)數(shù)原理和古典概型概率計(jì)算公式,計(jì)算出分布列并求得數(shù)學(xué)期望.

解:(1)一次取出的個(gè)小球上的數(shù)字互不相同的事件記為

為一次取出的個(gè)小球上有兩個(gè)數(shù)字相同

(2)由題意可知所有可能的取值為:2,3,4,5

;;

的分布列為:

2

3

4

5

答:隨機(jī)變量的期望是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠有25周歲以上(含25周歲)工人300名,25周歲以下工人200.為研究工人的日平均生產(chǎn)量是否與年齡有關(guān),現(xiàn)采用分層抽樣的方法,從中抽取了100名工人,先統(tǒng)計(jì)了他們某月的日平均生產(chǎn)件數(shù),然后按工人年齡在“25周歲以上(含25周歲)”和“25周歲以下”分為兩組,再將兩組工人的日平均生產(chǎn)件數(shù)分成5組:分別加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.

1)從樣本中日平均生產(chǎn)件數(shù)不足60的工人中隨機(jī)抽取2人,求至少抽到一名“25周歲以下組”工人的概率;

2)規(guī)定日平均生產(chǎn)件數(shù)不少于80的為“生產(chǎn)能手”,請(qǐng)你根據(jù)已知條件完成2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為“生產(chǎn)能手與工人所在的年齡組有關(guān)”?

P

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,且與拋物線交于,兩點(diǎn),為坐標(biāo)原點(diǎn))的面積為

(1)求橢圓的方程;

(2)如圖,點(diǎn)為橢圓上一動(dòng)點(diǎn)(非長(zhǎng)軸端點(diǎn)),為左、右焦點(diǎn),的延長(zhǎng)線與橢圓交于點(diǎn),的延長(zhǎng)線與橢圓交于點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年,海南等8省公布了高考改革綜合方案將采取模式,即語文、數(shù)學(xué)、英語必考,然后考生先在物理、歷史中選擇1門,再在思想政治、地理、化學(xué)、生物中選擇2門為了更好進(jìn)行生涯規(guī)劃,甲同學(xué)對(duì)高一一年來的七次考試成績(jī)進(jìn)行統(tǒng)計(jì)分析,其中物理、歷史成績(jī)的莖葉圖如圖所示.

1)若甲同學(xué)隨機(jī)選擇3門功課,求他選到物理、地理兩門功課的概率;

2)試根據(jù)莖葉圖分析甲同學(xué)的物理和歷史哪一學(xué)科成績(jī)更穩(wěn)定.(不需計(jì)算)

3)甲同學(xué)發(fā)現(xiàn),其物理考試成績(jī)(分)與班級(jí)平均分(分)具有線性相關(guān)關(guān)系,統(tǒng)計(jì)數(shù)據(jù)如下表所示,試求當(dāng)班級(jí)平均分為50分時(shí),其物理考試成績(jī).(計(jì)算時(shí)精確到0.01

(分)

57

61

65

72

74

77

84

(分)

76

82

82

85

87

90

93

參考數(shù)據(jù):,,.

參考公式:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程是為參數(shù)),曲線的直角坐標(biāo)方程為,將曲線上的點(diǎn)向下平移1個(gè)單位,然后橫坐標(biāo)伸長(zhǎng)為原來的2倍,縱坐標(biāo)不變,得到曲線

1)求曲線和曲線的直角坐標(biāo)方程;

2)若曲線和曲線相交于兩點(diǎn),求三角形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.

1)求曲線的普通方程和直線的直角坐標(biāo)方程;

2)設(shè)點(diǎn),若直線與曲線相交于、兩點(diǎn),求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為拋物線的焦點(diǎn),為圓上任意點(diǎn),且最大值為.

1)求拋物線的方程;

2)若在拋物線上,過作圓的兩條切線交拋物線、,求中點(diǎn)的縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸,取與直角坐標(biāo)系相同的長(zhǎng)度單位建立極坐標(biāo)系.曲線的參數(shù)方程為,(為參數(shù)),曲線的極坐標(biāo)方程為,且交單的橫坐標(biāo)為.

1)求曲線的普通方程.

2)設(shè)為曲線軸的兩個(gè)交點(diǎn),為曲線上不同于的任意一點(diǎn),若直線分別與交于兩點(diǎn),求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),函數(shù),其中,的一個(gè)極值點(diǎn),且.

1)討論的單調(diào)性

2)求實(shí)數(shù)a的值

3)證明

查看答案和解析>>

同步練習(xí)冊(cè)答案