【題目】心理學(xué)家分析發(fā)現(xiàn)視覺和空間能力與性別有關(guān),某數(shù)學(xué)興趣小組為了驗證這個結(jié)論,從興趣小組中按分層抽樣的方法抽取50名同學(xué)(男30女20),給所有同學(xué)幾何題和代數(shù)題各一題,讓各位同學(xué)自由選擇一道題進行解答.選題情況如下表:(單位:人)

)能否據(jù)此判斷有97.5%的把握認為視覺和空間能力與性別有關(guān)?

)經(jīng)過多次測試后,甲每次解答一道幾何題所用的時間在57分鐘,乙每次解答一道幾何題所用的時間在68分鐘,現(xiàn)甲、乙各解同一道幾何題,求乙比甲先解答完的概率.

【答案】(I)有的把握認為視覺和空間能力與性別有關(guān);(II

【解析】

試題分析:(I)本問考查獨立性檢驗,根據(jù)公式,代入數(shù)據(jù)得,所以有的把握認為視覺和空間能力與性別有關(guān);(II)本文考查幾何概型,首先設(shè)甲、乙解答一道題的時間分別為分鐘,根據(jù)題意應(yīng)滿足,在平面直角坐標系中作圖表示出不等式組表示的平面區(qū)域,為一個矩形,若乙比甲先解答完,則應(yīng)滿足,在該直角坐標系中作直線,則直線的右下方表示,在矩形區(qū)域內(nèi)占據(jù)的區(qū)域如圖中的陰影三角形部分,設(shè)事件乙比甲先解完,則根據(jù)幾何概型概率公式可知,表示圖中陰影三角形的面積,表示矩形區(qū)域).

試題解析:()由表中數(shù)據(jù)得的觀測值

所以根據(jù)統(tǒng)計有的把握認為視覺和空間能力與性別有關(guān). 6分

)設(shè)甲、乙解答一道幾何題的時間分別為分鐘,則基本事件滿足的區(qū)域為(如圖所示)

設(shè)事件乙比甲先做完此道題 則滿足的區(qū)域為

由幾何概型

即乙比甲先解答完的概率為 12分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校隨機抽取20個班,調(diào)查各班中有網(wǎng)上購物經(jīng)歷的人數(shù),所得數(shù)據(jù)的莖葉圖如圖所示.以組距為5將數(shù)據(jù)分組成[0,5),[5,10),…,[30,35),[35,40]時,所作的頻率分布直方圖是( )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】微信是騰訊公司推出的一種手機通訊軟件,它支持發(fā)送語音短信、視頻、圖片和文字,一經(jīng)推出便風(fēng)靡全國,甚至涌現(xiàn)出一批在微信的朋友圈內(nèi)銷售商品的人被稱為微商.為了調(diào)查每天微信用戶使用微信的時間,某經(jīng)銷化妝品的微商在一廣場隨機采訪男性、女性用戶各50名,其中每天玩微信超過6小時的用戶列為“微信控”,否則稱其為“非微信控”,調(diào)查結(jié)果如下:

1根據(jù)以上數(shù)據(jù),能否有60%的把握認為“微信控”與”性別“有關(guān)?

2現(xiàn)從調(diào)查的女性用戶中按分層抽樣的方法選出5人,從這5人中再隨機抽取3人贈送200元的護膚品套裝,求這3人中微信控”的人數(shù)為2的概率.

參考公式:,其中n=a+b+c+d.

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量,,且 , ,分別為的三邊所對的角.

求角的大。

,成等比數(shù)列,且,求邊C的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】長方體中,,,點,分別在,上,,過的平面與此長方體的面相交,交線圍成一個正方形.

1)在圖中畫出這個正方形(不必說明畫法和理由);

2)求直線與平面所成角的正弦值.

(注:圖中未標注名稱的點均為線段等分點,僅為(1)中作圖提供參考.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校為了了解高一,高二,高三這三個年級之間的學(xué)生打王者榮耀游戲的人數(shù)情況,擬從這三個年級中按人數(shù)比例抽取部分學(xué)生進行調(diào)查,則最合理的抽樣方法是(  )

A. 抽簽法 B. 系統(tǒng)抽樣法 C. 分層抽樣法 D. 隨機數(shù)法

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是正方形,側(cè)棱底面 中點,

(1)證明:平面

(2)證明:平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平行四邊形中,,點是線段的中點線段交于點

1求直線的方程;

2求點的坐標

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】原命題p:“設(shè)a,b,c∈R,若a>b,則ac2>bc2”以及它的逆命題、否命題、逆否命題中,真命題的個數(shù)為(  )

A. 0 B. 1 C. 2 D. 4

查看答案和解析>>

同步練習(xí)冊答案