正方體ABCD-A1B1C1D1中,M為棱AB的中點,則異面直線DM與所成角的余弦值為()

A.B.C.D.

B

解析試題分析:取CD的中點為N,連接BN,

因為在正方體ABCD-A1B1C1D1中,M為棱AB的中點,
所以DM∥BN,
所以異面直線DM與D1B所成角等于直線BN與D1B所成角.
設(shè)正方體的棱長為2,所以D1N= ,BN= ,D1B="2" ,
所以在△D1BN中,由余弦定理可得:cos∠D1BN= ,故選B.
考點:本題主要是考查異面直線及其所成的角,解決此題題的關(guān)鍵是通過平移作出與異面直線所成角相等或者互補的角,再利用解三角形的有關(guān)求出角,此題也可以建立空間直角坐標系,利用向量之間的運算求出異面直線的夾角,此題考查空間想象能力、運算能力和推理論證能力.
點評:解決該試題的關(guān)鍵是取CD的中點為N,連接BN,根據(jù)題意并且結(jié)合正方體的結(jié)構(gòu)特征可得DM∥BN,所以異面直線DM與D1B所成角等于直線BN與D1B所成角或者其補角,再利用解三角形的有關(guān)知識求出答案

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:單選題

三棱錐的高為,若三個側(cè)面兩兩垂直,則一定為△的(   )

A.垂心 B.外心C.內(nèi)心D.重心

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

圖甲所表示的簡單組合體可由下面某個圖形繞對稱軸旋轉(zhuǎn)而成,這個圖形是(   )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

將邊長為1的正方形ABCD,沿對角線AC折起,使BD=.則三棱錐D-ABC的體積為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

設(shè)四面體的六條棱的長分別為1,1,1,1,,且長為的棱與長為的棱異面,則的取值范圍是

A. B. C. D. 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

把正方形ABCD沿對角線AC折起,當以A、B、C、D四點為頂點的棱錐體積最大時,直線BD和平面ABC所成的角的大小為 (       )
A.  90°          B .60°        C . 45°            D .30°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知某個幾何體的三視圖如右圖所示,根據(jù)圖中標出的數(shù)字,得這個幾何體的體積是(  。

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

一個幾何體的三視圖如圖所示,且其側(cè)視圖是一個等邊三角形,則這個幾何體的體積為(    )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

如圖是一個幾何體的三視圖,根據(jù)圖中數(shù)據(jù),可得該幾何體的表面積是(   )

A.B.C.D.

查看答案和解析>>

同步練習冊答案