【題目】設(shè)函數(shù)在處取最小值.
(1)求的值,并化簡 ;
(2)在ABC中,分別是角A,B, C的對邊,已知,求角C.
【答案】(1)(2)
【解析】
試題分析:(1)利用三角函數(shù)公式可將函數(shù)式化簡,由在處取最小值可求得的值,進(jìn)而得到函數(shù)解析式;(2)由可得到A角,結(jié)合正弦定理可求得B角大小,由三角形內(nèi)角和可求得C角大小
試題解析:(1)… 1分
…… 2分
因?yàn)楹瘮?shù)f (x)在處取最小值,所以,(3分)由誘導(dǎo)公式知,
因?yàn)?/span>,所以.(4分) 所以 …… 5分
(2)因?yàn)?/span>,所以,因?yàn)榻茿為ABC的內(nèi)角,所以.… 6分
又因?yàn)?/span>所以由正弦定理,得,
也就是, …… 8分
因?yàn)?/span>,所以或. …… 10分(對1個1分)
當(dāng)時,; …… 11分
當(dāng)時,. …… 12分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè).
(Ⅰ)若在其定義域內(nèi)為單調(diào)遞增函數(shù),求實(shí)數(shù)的取值范圍;
(Ⅱ)設(shè),且,若在[1,e]上至少存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), (為自然對數(shù)的底數(shù)).
(1)若函數(shù)的圖象在處的切線方程為,求, 的值;
(2)若時,函數(shù)在內(nèi)是增函數(shù),求的取值范圍;
(3)當(dāng)時,設(shè)函數(shù)的圖象與函數(shù)的圖象交于點(diǎn)、,過線段的中點(diǎn)作軸的垂線分別交、于點(diǎn)、,問是否存在點(diǎn),使在處的切線與在處的切線平行?若存在,求出的橫坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知.
(1)當(dāng)時,求的值域;
(2)若b為正實(shí)數(shù),的最大值為M,最小值為m,且滿足,求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+bx為偶函數(shù),數(shù)列{an}滿足an+1=2f(an-1)+1,且a1=3,an>1.
(1)設(shè)bn=log2(an-1),證明:數(shù)列{bn+1}為等比數(shù)列;
(2)設(shè)cn=nbn,求數(shù)列{cn}的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個正方體的平面展開圖及該正方體直觀圖的示意圖如圖所示,在正方體中,設(shè)BC的中點(diǎn)為M,GH的中點(diǎn)為N。
(1)請將字母F,G,H標(biāo)記在正方體相應(yīng)的頂點(diǎn)處(不需說明理由);
(2)證明:直線MN∥平面BDH;
(3)過點(diǎn)M,N,H的平面將正方體分割為兩部分,求這兩部分的體積比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地有10個著名景點(diǎn),其中8 個為日游景點(diǎn),2個為夜游景點(diǎn).某旅行團(tuán)要從這10個景點(diǎn)中選5個作為二日游的旅游地.行程安排為第一天上午、下午、晚上各一個景點(diǎn),第二天上午、下午各一個景點(diǎn).
(1)甲、乙兩個日游景點(diǎn)至少選1個的不同排法有多少種?
(2)甲、乙兩日游景點(diǎn)在同一天游玩的不同排法有多少種?
(3)甲、乙兩日游景點(diǎn)不同時被選,共有多少種不同排法?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的參數(shù)方程為 (t為參數(shù)),曲線C1的方程為ρ(ρ-4sin θ)=12,定點(diǎn)A(6,0),點(diǎn)P是曲線C1上的動點(diǎn),Q為AP的中點(diǎn).
(1)求點(diǎn)Q的軌跡C2的直角坐標(biāo)方程;
(2)直線l與直線C2交于A,B兩點(diǎn),若|AB|≥2,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com