精英家教網 > 高中數學 > 題目詳情
3.我市隨機抽取部分企業(yè)調查年上繳稅收情況(單位:萬元),將所得數據繪制成頻率分布直方圖(如圖),年上繳稅收范圍是[0,100],樣本數據分組為[0,20),[20,40),[40,60),[60,80),[80,100]
(Ⅰ)求直方圖中x的值
(Ⅱ)如果年上繳稅收不少于60萬元的企業(yè)可申請政策優(yōu)惠,若全市共有企業(yè)1300個,試估計全市有多少企業(yè)可以申請政策優(yōu)惠.

分析 (Ⅰ)根據頻率和為1,列出方程求出x的值;
(Ⅱ)計算繳稅收不少于60萬元的企業(yè)對應的頻率與頻數即可.

解答 解:(Ⅰ)根據頻率和為1,得;
20×(x+0.025+0.0065+0.003+0.003)=1,
解得x=0.0125;
(Ⅱ)可申請政策優(yōu)惠企業(yè)的頻率為
20×0.006=0.12,
且1300×0.12=156,
故全市1300個企業(yè)中,估計有156個企業(yè)可申請政策優(yōu)惠.

點評 本題考查了頻率分布直方圖的應用問題,是基礎題目.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

4.已知f(x)=x2+mx+1(m∈R),g(x)=ex
(1)當x∈[0,2]時,F(x)=f(x)-g(x)為增函數,求實數m的取值范圍;
(2)若m∈(-1,0),設函數$G(x)=\frac{f(x)}{g(x)},H(x)=-\frac{1}{4}x+\frac{5}{4}$,求證:對任意x1,x2∈[1,1-m],G(x1)<H(x2)恒成立.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

14.設數列{an}(n≥1,n∈N)滿足a1=2,a2=6,且an+2-2an+1+an=2,若[x]表示不超過x的最大整數,則$[{\frac{2017}{a_1}+\frac{2017}{a_2}+…+\frac{2017}{{{a_{2017}}}}}]$=2016.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

11.在△ABC中,$∠C=\frac{π}{4}$,AB=2,$AC=\sqrt{6}$,則cosB的值為( 。
A.$\frac{1}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$或$-\frac{{\sqrt{3}}}{2}$D.$\frac{1}{2}$或$-\frac{1}{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

18.如圖,三棱柱ABC-A1B1C1中,AC=BC,AB=AA1,∠A1AB=60°,D是AB的中點.
(Ⅰ)求證:BC1∥平面A1CD;
(Ⅱ)求證:AB⊥平面A1CD;
(Ⅲ)若AB=AC=2,${A_1}C=\sqrt{6}$,求三棱柱ABC-A1B1C1的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

8.如圖是函數f(x)=cos(πx+φ)(0<φ<$\frac{π}{2}$)的部分圖象,則f(3x0)=-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

15.已知四棱錐P-ABCD中底面四邊形ABCD是正方形,各側面都是邊長為2的正三角形,M是棱PC的中點.建立空間直角坐標系,利用空間向量方法解答以下問題:
(1)求證:PA∥平面BMD;
(2)求二面角M-BD-C的平面角的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

12.已知函數f(x)$\left\{\begin{array}{l}{{a}^{x}-2a,x>0}\\{-4ax+a,x≤0}\end{array}\right.$,其中a>0,且a≠1,若f(x)在R上單調,則a的取值范圍是( 。
A.(0,$\frac{1}{3}$]B.[$\frac{1}{3}$,1)C.(0,$\frac{1}{2}$]D.[$\frac{1}{2}$,1)

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

13.已知非零實數a,b滿足a<b,則下列不等式中一定成立的是(  )
A.a+b>0B.$\frac{1}{a}>\frac{1}$C.ab<b2D.a3-b3<0

查看答案和解析>>

同步練習冊答案