分析 構(gòu)造bn=an+1-an,則b1=a2-a1=4,由題意可得(an+2-an+1)-(an+1-an)=bn+1-bn=2,利用等差數(shù)列的通項(xiàng)公式可得bn=an+1-an=2n+2,再利用“累加求和”方法可得an=n(n+1),可得$\frac{1}{{a}_{n}}$=$\frac{1}{n}-\frac{1}{n+1}$,再利用取整數(shù)函數(shù)即可得出.
解答 解:構(gòu)造bn=an+1-an,則b1=a2-a1=4,
由題意可得(an+2-an+1)-(an+1-an)=bn+1-bn=2,
故數(shù)列{bn}是4為首項(xiàng)2為公差的等差數(shù)列,
故bn=an+1-an=4+2(n-1)=2n+2,
故a2-a1=4,a3-a2=6,a4-a3=8,…,an-an-1=2n,
以上n-1個(gè)式子相加可得an-a1=4+6+…+2n=$\frac{(n-1)(4+2n)}{2}$,解得an=n(n+1),
∴$\frac{1}{{a}_{n}}$=$\frac{1}{n}-\frac{1}{n+1}$,
∴$\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}+…$+$\frac{1}{{a}_{n}}$=$(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+($\frac{1}{n}-\frac{1}{n+1}$)=1-$\frac{1}{n+1}$,
∴$\frac{2017}{{a}_{1}}+\frac{2017}{{a}_{2}}+$…+$\frac{2017}{{a}_{2017}}$=2017-$\frac{2017}{2018}$
則$[{\frac{2017}{a_1}+\frac{2017}{a_2}+…+\frac{2017}{{{a_{2017}}}}}]$=$[2016+\frac{1}{2018}]$=2016.
故答案為:2016.
點(diǎn)評(píng) 本題考查了構(gòu)造方法、等差數(shù)列的通項(xiàng)公式可、“累加求和”方法、“裂項(xiàng)求和”方法、取整數(shù)函數(shù),考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分而不必要條件 | B. | 必要而不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=$\frac{1}{x}$ | B. | y=5-2x | C. | y=|x| | D. | y=-2x2+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{8}{3}$ | B. | 4$\sqrt{3}$ | C. | $\frac{4\sqrt{3}}{3}$ | D. | 8 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com