【題目】某醫(yī)院體檢中心為回饋大眾,推出優(yōu)惠活動(dòng):對(duì)首次參加體檢的人員,按200元次收費(fèi),并注冊(cè)成為會(huì)員,對(duì)會(huì)員的后續(xù)體檢給予相應(yīng)優(yōu)惠,標(biāo)準(zhǔn)如下:

體檢次序

第一次

第二次

第三次

第四次

第五次及以上

收費(fèi)比例

1

0.95

0.90

0.85

0.8

該體檢中心從所有會(huì)員中隨機(jī)選取了100位對(duì)他們?cè)诒局行膮⒓芋w檢的次數(shù)進(jìn)行統(tǒng)計(jì),得到數(shù)據(jù)如下表:

體檢次數(shù)

一次

兩次

三次

四次

五次及以上

頻數(shù)

60

20

10

5

5

假設(shè)該體檢中心為顧客體檢一次的成本費(fèi)用為150元,根據(jù)所給數(shù)據(jù),解答下列問(wèn)題:

1)該體檢中心要從這100人里至少體檢3次的會(huì)員中,按體檢次數(shù)用分層抽樣的方法抽出8人,再?gòu)倪@8人中抽出2人發(fā)放紀(jì)念品,求抽出的2人中恰有1人體檢3次的概率;

2)若以這100位會(huì)員體檢次數(shù)的頻率分布估計(jì)該體檢中心所有會(huì)員體檢次數(shù)的概率分布,已知該中心本周共接待了1000名顧客參加體檢,試估計(jì)該體檢中心本周所獲利潤(rùn).

【答案】1242500

【解析】

1)根據(jù)分層抽樣計(jì)算出抽出的人中有人體檢三次,有人體檢四次,有人體檢五次及以上.,用組合知識(shí)求出從8人中抽取2人的方法數(shù),以及有1 人體檢3次的方法數(shù),然后計(jì)算概率;

2)按比例估算出參數(shù)體檢一次、二次、三次、四次、五次及以上的人數(shù)后可計(jì)算出利潤(rùn).

解:(1)由題,抽出的人中有人體檢三次,有人體檢四次,有人體檢五次及以上.

個(gè)人中抽取兩人共有種取法,其中恰有人體檢次的情況有種,

所求概率為;

2)由題可估計(jì):這名顧客中,在體檢中心參加的本次體檢是他在此中心參加的第一次體檢的有人,

第二次體檢的有人,第三次體檢的有人,

第四次體檢的有人,第五次及五次以上體檢的有人,

醫(yī)院的收入約為

又醫(yī)院成本為

利潤(rùn)為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓錐的頂點(diǎn)為,底面圓的兩條直徑分別為,且,若平面平面.現(xiàn)有以下四個(gè)結(jié)論:

平面

;

③若是底面圓周上的動(dòng)點(diǎn),則的最大面積等于的面積;

與平面所成的角為.

其中正確結(jié)論的個(gè)數(shù)是(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代典籍《周易》用描述萬(wàn)物的變化,每一卦由六爻組成.其中有一種起卦方法稱為金錢(qián)起卦法,其做法為:取三枚相同的錢(qián)幣合于雙手中,上下?lián)u動(dòng)數(shù)下使錢(qián)幣翻滾摩擦,再隨意拋撒錢(qián)幣到桌面或平盤(pán)等硬物上,如此重復(fù)六次,得到六爻.若三枚錢(qián)幣全部正面向上或全部反面向上,就稱為變爻.若每一枚錢(qián)幣正面向上的概率為,則一卦中恰有兩個(gè)變爻的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)的嫦娥四號(hào)探測(cè)器,簡(jiǎn)稱“四號(hào)星”,是世界首個(gè)在月球背面軟著陸和巡視探測(cè)的航天器.2019925日,中國(guó)科研人員利用嫦娥四號(hào)數(shù)據(jù)精確定位了嫦娥四號(hào)的著陸位置,并再現(xiàn)了嫦娥四號(hào)的落月過(guò)程,該成果由國(guó)際科學(xué)期刊《自然·通訊》在線發(fā)表.如圖所示,

現(xiàn)假設(shè)“四號(hào)星”沿地月轉(zhuǎn)移軌道飛向月球后,在月球附近一點(diǎn)變軌進(jìn)入以月球球心為一個(gè)焦點(diǎn)的橢圓軌道Ⅰ繞月飛行,之后衛(wèi)星在點(diǎn)第二次變軌進(jìn)入仍以為一個(gè)焦點(diǎn)的橢圓軌道Ⅱ繞月飛行.若用分別表示橢圓軌道Ⅰ和Ⅱ的焦距,用分別表示橢圓軌道Ⅰ和Ⅱ的長(zhǎng)軸長(zhǎng),給出下列式子:①;②;③;④.其中正確的式子的序號(hào)是(

A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】十三屆全國(guó)人大二次會(huì)議于201935日在京召開(kāi)為了了解某校大學(xué)生對(duì)兩會(huì)的關(guān)注程度,學(xué)校媒體在開(kāi)幕后的第二天,從全校學(xué)生中隨機(jī)抽取了180人,對(duì)是否收看2019年兩會(huì)開(kāi)幕會(huì)情況進(jìn)行了問(wèn)卷調(diào)查,統(tǒng)計(jì)數(shù)據(jù)如下:

收看

沒(méi)收看

男生

80

40

女生

30

30

1)根據(jù)上表說(shuō)明,在犯錯(cuò)誤的概率不超過(guò)1%的前提下,能否認(rèn)為該校大學(xué)生收看開(kāi)幕會(huì)與性別有關(guān)?(計(jì)算結(jié)果精確到0.001

2)現(xiàn)從隨機(jī)抽取的學(xué)生中,采用按性別分層抽樣的方法選取6人,來(lái)參加2019年兩會(huì)的志愿者宣傳活動(dòng),若從這6人中隨機(jī)選取2人到各班級(jí)宣傳介紹,求恰好選到一名男生和一名女生的概率. ,其中.

0.10

0.05

0.025

0.01

0.005

2.706

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】記無(wú)窮數(shù)列的前n項(xiàng),,,的最大項(xiàng)為,第n項(xiàng)之后的各項(xiàng),的最小項(xiàng)為,

1)若數(shù)列的通項(xiàng)公式為,寫(xiě)出,,并求數(shù)列通項(xiàng)公式;

2)若數(shù)列的通項(xiàng)公式為,判斷是否為等差數(shù)列,若是,求出公差;若不是,請(qǐng)說(shuō)明理由;

3)若數(shù)列為公差大于零的等差數(shù)列,求證:是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解全市統(tǒng)考情況,從所有參加考試的考生中抽取4000名考生的成績(jī),頻率分布直方圖如下圖所示.

(1)求這4000名考生的半均成績(jī)(同一組中數(shù)據(jù)用該組區(qū)間中點(diǎn)作代表);

2)由直方圖可認(rèn)為考生考試成績(jī)z服從正態(tài)分布,其中分別取考生的平均成績(jī)和考生成績(jī)的方差,那么抽取的4000名考生成績(jī)超過(guò)84.81分(含84.81分)的人數(shù)估計(jì)有多少人?

3)如果用抽取的考生成績(jī)的情況來(lái)估計(jì)全市考生的成績(jī)情況,現(xiàn)從全市考生中隨機(jī)抽取4名考生,記成績(jī)不超過(guò)84.81分的考生人數(shù)為,求.(精確到0.001

附:;

,則;

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著經(jīng)濟(jì)全球化、信息化的發(fā)展,企業(yè)之間的競(jìng)爭(zhēng)從資源的爭(zhēng)奪轉(zhuǎn)向人才的競(jìng)爭(zhēng),吸引、留住培養(yǎng)和用好人才成為人力資源管理的戰(zhàn)略目標(biāo)和緊迫任務(wù),在此背景下,某信息網(wǎng)站在15個(gè)城市中對(duì)剛畢業(yè)的大學(xué)生的月平均收入薪資和月平均期望薪資做了調(diào)查,數(shù)據(jù)如下圖所示.

1)若某大學(xué)畢業(yè)生從這15座城市中隨機(jī)選擇一座城市就業(yè),求該生選中月平均收入薪資高于8500元的城市的概率;

2)現(xiàn)有2名大學(xué)畢業(yè)生在這15座城市中各隨機(jī)選擇一座城市就業(yè),且2人的選擇相互獨(dú)立,記X為選中月平均收入薪資高于8500元的城市的人數(shù),求X的分布列和數(shù)學(xué)期望EX);

3)記圖中月平均收入薪資對(duì)應(yīng)數(shù)據(jù)的方差為,月平均期望薪資對(duì)應(yīng)數(shù)據(jù)的方差為,判斷的大小(只需寫(xiě)出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

1)若不等式對(duì)恒成立,求的最小值;

2)證明:.

3)設(shè)方程的實(shí)根為.若存在,,使得,證明:.

查看答案和解析>>

同步練習(xí)冊(cè)答案