若點(diǎn)M(x,y)為平面區(qū)域
y≤x+1
y≥3x-1
x≥0,y≥0
上的一個(gè)動(dòng)點(diǎn),則x+2y的最大值為
 
考點(diǎn):簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式對應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識(shí),通過平移即可求z的最大值.
解答: 解:作出不等式對應(yīng)的平面區(qū)域,
由z=x+2y,得y=-
1
2
x+
z
2

平移直線y=-
1
2
x+
z
2
,由圖象可知當(dāng)直線y=-
1
2
x+
z
2
經(jīng)過點(diǎn)A時(shí),
直線y=-
1
2
x+
z
2
的截距最大,此時(shí)z最大.
y=x+1
y=3x-1
,得
x=1
y=2
,
即C(1,2),
此時(shí)z的最大值為z=1+2×2=1+4=5,
故答案為:5
點(diǎn)評:本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知
AB
=(1,2,2,),
AC
=(2,-2,1),則平面ABC的一個(gè)單位法向量可表示為(  )
A、(2,1,-2)
B、(
1
3
,
2
3
,
2
3
C、(
2
3
,-
2
3
,
1
3
D、(
2
3
,
1
3
,-
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=sinx+cosx的最小值和最小正周期分別是(  )
A、12,π
B、-2,2π
C、-
2
,π
D、-
2
,2π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某人仿照福利彩票快3設(shè)計(jì)了一款游戲,有一個(gè)不透明的紙箱里裝有標(biāo)號(hào)分別為1,2,3,4,5,6形狀大小相同的小球,游戲參加者需要三次有放回的從箱子里取出一個(gè)小球,分別記下小球上的數(shù)字,若三次都是同一個(gè)數(shù)字,獲一等獎(jiǎng);若三次小球上的數(shù)字都是連號(hào)(不考慮順序),獲二等獎(jiǎng);其它情況無獎(jiǎng).參加游戲者需要購買20元(包括卡片成本費(fèi)為4元)的精美卡片一張,憑次卡片參加一次摸球活動(dòng)
(1)某人購買兩張卡片參加兩次游戲,求至少有一次獲獎(jiǎng)的概率;
(2)如果獎(jiǎng)勵(lì)改為返還一定價(jià)值的禮品,一等獎(jiǎng)禮品價(jià)值是二等獎(jiǎng)的2倍,統(tǒng)計(jì)表明:每天的銷量y(張)與一等獎(jiǎng)的獎(jiǎng)禮品價(jià)值x(元)的關(guān)系式為y=
x
4
+24.問x設(shè)定為多少最理想?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是公差不為零的等差數(shù)列,a1=2且a2,a4,a8成等比數(shù)列.求數(shù)列{an}的通項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
x+1,-1≤x<0
ex,0≤x≤1
的圖象與直線x=1及x軸所圍成的封閉圖形的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于定義域?yàn)镈的函數(shù)y=f(x),若同時(shí)滿足下列條件:①f(x)在D內(nèi)單調(diào)遞增或單調(diào)遞減;②存在區(qū)間[a,b]⊆D,使f(x)在[a,b]上的值域?yàn)閇a,b];那么把y=f(x)(x∈D)叫閉函數(shù),且條件②中的區(qū)間[a,b]為f(x)的一個(gè)“好區(qū)間”.
(1)求閉函數(shù)y=-x3的“好區(qū)間”;
(2)若[1,16]為閉函數(shù)f(x)=m
x
+nlog2
x的“好區(qū)間”,求m、n的值;
(3)判斷函數(shù)y=k+
x+1
是否為閉函數(shù)?若是閉函數(shù),求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖1,在長方形ABCD中,AB=2,AD=1,E為CD的中點(diǎn),以AE為折痕,把△DAE折起為△D′AE,且平面D′AE⊥平面ABCE(如圖2).
(1)求證:AD′⊥BE
(2)求四棱錐D′-ABCE的體積;
(3)在棱D′E上是否存在一點(diǎn)P,使得D′B∥平面PAC,若存在,求出點(diǎn)P的位置,不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)i為虛數(shù)單位,復(fù)數(shù)
2i
1-2i
的共軛復(fù)數(shù)是( 。
A、
3
5
i
B、-
3
5
i
C、i
D、-
4
5
-
2
5
i

查看答案和解析>>

同步練習(xí)冊答案