若方程
x2
9-k
+
y2
k-1
=1表示雙曲線(xiàn),則k的取值范圍是
 
考點(diǎn):雙曲線(xiàn)的簡(jiǎn)單性質(zhì)
專(zhuān)題:計(jì)算題,圓錐曲線(xiàn)的定義、性質(zhì)與方程
分析:根據(jù)雙曲線(xiàn)的標(biāo)準(zhǔn)方程,可得只需9-k與k-1異號(hào)即可,則解不等式(9-k)(k-1)<0即可.
解答: 解:由題意知(9-k)(k-1)<0,
解得k<1或k>9.
故答案為:k<1或k>9.
點(diǎn)評(píng):本題主要考查了雙曲線(xiàn)的定義,屬基礎(chǔ)題;解答的關(guān)鍵是根據(jù)雙曲線(xiàn)的標(biāo)準(zhǔn)方程建立不等關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某幾何體的三視圖如圖所示,則它的體積是( 。
A、3B、5C、7D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知ABCDEF是正六邊形,且
AB
=
a
AE
=
b
,則
BC
=( 。
A、
1
2
a
-
b
B、
1
2
b
-
a
C、
a
+
1
2
b
D、
1
2
a
+
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

半徑為R的球,其內(nèi)接正方體的表面積為(  )
A、4R2
B、6R2
C、8R2
D、10R2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

集合M={x|lgx<0},N={x|x2≤4},則M∩N=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,AC=BC=1,∠ACB=90°,PA⊥平面ABC,CE∥PA,PA=2CE=2.
(Ⅰ)求三棱錐E-PAB的體積;
(Ⅱ)在棱PB上是否存在一點(diǎn)F,使得EF∥平面ABC?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,AD=AA1=1,AB=2,點(diǎn)E在棱AB上.
(1)證明:D1E⊥A1D;
(2)當(dāng)E點(diǎn)為線(xiàn)段AB的中點(diǎn)時(shí),求異面直線(xiàn)D1E與AC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

A、B、C為△ABC的三內(nèi)角,且其對(duì)邊分別為a、b、c,若
m
=(-cos
A
2
,sin
A
2
),
n
=(cos
A
2
,sin
A
2
),且
m
n
=
1
2

(Ⅰ)求角A;
(Ⅱ)若a=
3
,求2b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知四棱錐P-ABCD的底面ABCD是菱形,PA=AD=AC=2,PD=
2
PA,△PCD是以CD為底邊的等腰三角形,且點(diǎn)F為PC的中點(diǎn).
(1)求證:PA∥平面BFD;
(2)求二面角C-BF-D的余弦值;
(3)求三棱錐B-CDF的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案