【題目】某投資公司準(zhǔn)備在2020年年初將兩千萬(wàn)投資東營(yíng)經(jīng)濟(jì)開(kāi)發(fā)區(qū)的示范區(qū)新型物流,商旅文化兩個(gè)項(xiàng)目中的一個(gè)之中.

項(xiàng)目一:新型物流倉(cāng)是為企業(yè)提供倉(cāng)儲(chǔ)、運(yùn)輸、配送、貨運(yùn)信息等綜合物流服務(wù)的平臺(tái).現(xiàn)準(zhǔn)備投資建設(shè)10個(gè)新型物流倉(cāng),每個(gè)物流倉(cāng)投資0.2千萬(wàn)元,假設(shè)每個(gè)物流倉(cāng)盈利是相互獨(dú)立的,據(jù)市場(chǎng)調(diào)研,到2022年底每個(gè)物流倉(cāng)盈利的概率為,若盈利則盈利為投資額的40%,否則盈利額為0

項(xiàng)目二:購(gòu)物娛樂(lè)廣場(chǎng)是一處融商業(yè)和娛樂(lè)于一體的現(xiàn)代化綜合服務(wù)廣場(chǎng).據(jù)市場(chǎng)調(diào)研,投資到該項(xiàng)目上,到2022年底可能盈利投資額的50%,也可能虧損投資額的30%,且這兩種情況發(fā)生的概率分別為

1)若投資項(xiàng)目一,記為盈利的物流倉(cāng)的個(gè)數(shù),求(用表示);

2)若投資項(xiàng)目二,記投資項(xiàng)目二的盈利為千萬(wàn)元,求(用表示);

3)在(1)(2)兩個(gè)條件下,針對(duì)以上兩個(gè)投資項(xiàng)目,請(qǐng)你為投資公司選擇一個(gè)項(xiàng)目,并說(shuō)明理由.

【答案】1;(2;(3)分類(lèi)討論,見(jiàn)解析.

【解析】

1)由題意結(jié)合二項(xiàng)分布的期望公式即可得解;

2)由題意列出分布列,利用離散型隨機(jī)變量期望公式即可得解;

3)由題意分別計(jì)算出項(xiàng)目一、項(xiàng)目二的利潤(rùn)的期望與方差,分類(lèi)比較即可得解.

1)由題意,

則盈利的物流倉(cāng)數(shù)的期望;

2)若投資項(xiàng)目二,盈利的金額為(千萬(wàn)元),虧損的金額為(千萬(wàn)元),

的分布列為

1

所以盈利的期望;

3)若盈利,則每個(gè)物流倉(cāng)盈利(千萬(wàn)元),

若選擇項(xiàng)目一,盈利的期望為(千萬(wàn)元),

方差為,

若選擇項(xiàng)目二,盈利的方差為:

,

①當(dāng)時(shí),,解得,

,故選擇項(xiàng)目一;

②當(dāng)時(shí),,解得,此時(shí)選擇項(xiàng)目一;

③當(dāng)時(shí),,解得,此時(shí)選擇項(xiàng)目二.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列關(guān)于空間向量的命題中,正確的有______.

①若向量,與空間任意向量都不能構(gòu)成基底,則;

②若非零向量,,滿足,,則有;

③若,是空間的一組基底,且,則,,四點(diǎn)共面;

④若向量,,,是空間一組基底,則,,也是空間的一組基底.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2axb,g(x)=ex(cxd),若曲線yf(x)和曲線yg(x)都過(guò)點(diǎn)P(0,2),且在點(diǎn)P處有相同的切線y=4x+2.

(1)求a,bc,d的值;

(2)若x≥-2時(shí),恒有f(x)≤kg(x),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,正四棱椎P-ABCD中,底面ABCD的邊長(zhǎng)為2,側(cè)棱長(zhǎng)為.

(I)若點(diǎn)EPD上的點(diǎn),且PB∥平面EAC.試確定E點(diǎn)的位置;

(Ⅱ)在(I)的條件下,點(diǎn)F為線段PA上的一點(diǎn)且,若平面AEC和平面BDF所成的銳二面角的余弦值為,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為2的菱形,側(cè)面底面ABCD,,E,Q分別是BCPC的中點(diǎn).

I)求直線BQ與平面PAB所成角的正弦值;

(Ⅱ)求二面角E-DQ-P的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】

1)求上的單調(diào)區(qū)間;

2)當(dāng)時(shí),設(shè)函數(shù)時(shí),證明

3)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市計(jì)劃按月訂購(gòu)一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價(jià)每瓶6元,未售出的酸奶降價(jià)處理,以每瓶2元的價(jià)格當(dāng)天全部處理完.根據(jù)往年銷(xiāo)售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間,需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購(gòu)計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得下面的頻數(shù)分布表:

以最高氣溫位于各區(qū)間的頻率代替最高氣溫位于該區(qū)間的概率.

(1)求六月份這種酸奶一天的需求量(單位:瓶)的分布列;

(2)設(shè)六月份一天銷(xiāo)售這種酸奶的利潤(rùn)為(單位:元),當(dāng)六月份這種酸奶一天的進(jìn)貨量(單位:瓶)為多少時(shí)?的數(shù)學(xué)期望達(dá)到最大值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著國(guó)家二孩政策的全面放開(kāi),為了調(diào)查一線城市和非一線城市的二孩生育意愿,某機(jī)構(gòu)用簡(jiǎn)單隨機(jī)抽樣方法從不同地區(qū)調(diào)查了位育齡婦女,結(jié)果如表.

非一線

一線

總計(jì)

愿生

不愿生

總計(jì)

附表:

算得,參照附表,得到的正確結(jié)論是( )

A. 在犯錯(cuò)誤的概率不超過(guò)的前提下,認(rèn)為“生育意愿與城市級(jí)別有關(guān)”

B. 以上的把握認(rèn)為“生育意愿與城市級(jí)別有關(guān)”

C. 在犯錯(cuò)誤的概率不超過(guò)的前提下,認(rèn)為“生育意愿與城市級(jí)別無(wú)關(guān)”

D. 以上的把握認(rèn)為“生育意愿與城市級(jí)別無(wú)關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】圓錐(其中為頂點(diǎn),為底面圓心)的側(cè)面積與底面積的比是,則圓錐與它外接球(即頂點(diǎn)在球面上且底面圓周也在球面上)的體積比為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案