分析 (1)由已知利用同角三角函數(shù)基本關(guān)系式即可計(jì)算得解.
(2)利用二倍角公式可求sin2α,cos2α的值,進(jìn)而利用兩角差的余弦函數(shù)公式即可計(jì)算得解.
解答 解:(1)因?yàn)?α∈(\frac{π}{2},π)$,tanα=-3,
可得$sinα=\frac{{3\sqrt{10}}}{10}$,$cosα=-\frac{{\sqrt{10}}}{10}$,
可得:$sin(\frac{π}{4}+α)=\frac{{\sqrt{2}}}{2}(sinα+cosα)=\frac{{\sqrt{2}}}{2}×(\frac{{3\sqrt{10}}}{10}-\frac{{\sqrt{10}}}{10})=\frac{{\sqrt{5}}}{5}$.
(2)sin2α=2sinαcosα=-$\frac{3}{5}$,cos2α=cos2α-sin2α=-$\frac{4}{5}$,
可得:$cos(\frac{2π}{3}-2α)$=cos$\frac{2π}{3}$cos2α+sin$\frac{2π}{3}$sin2α=$\frac{4-3\sqrt{3}}{10}$.
點(diǎn)評(píng) 本題主要考查了同角三角函數(shù)基本關(guān)系式,二倍角公式,兩角差的余弦函數(shù)公式在三角函數(shù)化簡(jiǎn)求值中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a≥-3 | B. | a≤-3 | C. | a≤5 | D. | a≥5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 正三角形的直觀圖是正三角形 | B. | 平行四邊形的直觀圖是平行四邊形 | ||
C. | 矩形的直觀圖是矩形 | D. | 圓的直觀圖是圓 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | -$\frac{1}{5}$ | C. | ±$\frac{1}{5}$ | D. | 不確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|x$<-\frac{1}{2}$或x$>\frac{1}{3}$} | B. | {x|x$\frac{1}{3}$或x>$\frac{1}{2}$} | C. | {x|-$\frac{1}{2}$<x<$\frac{1}{3}$} | D. | {x|-$\frac{1}{3}$<x<$\frac{1}{2}$} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com