如圖,已知三棱錐A-PBC中,AC⊥BC,AP⊥PC,M為AB的中點(diǎn),D為PB的中點(diǎn),且△PMB為正三角形.
(1)求證:BC⊥平面APC;
(2)若BC=3,AB=10,求二面角P-MC-B的余弦值.
考點(diǎn):與二面角有關(guān)的立體幾何綜合題,直線與平面垂直的判定
專題:空間位置關(guān)系與距離,空間角
分析:(1)由已知條件推導(dǎo)出MD⊥PB,AP⊥PB,由此能證明AP⊥平面PBC,從而得到BC⊥平面APC.
(2)建立空間直角坐標(biāo)系D-xyz,利用向量法能求出二面角P-MC-B的余弦值.
解答: (1)證明:∵△PMB為正三角形,
且D為PB的中點(diǎn),∴MD⊥PB.
又∵M(jìn)為AB的中點(diǎn),D為PB的中點(diǎn),
∴MD∥AP,∴AP⊥PB.…(3分)
又已知AP⊥PC,∴AP⊥平面PBC,
∴AP⊥BC,又∵AC⊥BC,AC∩AP=A,
∴BC⊥平面APC …(6分)
(2)解:建立空間直角坐標(biāo)系如圖,則B(
5
2
,0,0),P(-
5
2
,0,0
),M(0,0,
5
3
2
),
過點(diǎn)C做CH⊥PB垂足為H,
在Rt△PBC中,由射影定理得HC=
12
5
,BH=
9
5
,DH=
5
2
-BH=
7
10
,
∴點(diǎn)C的坐標(biāo)為(
7
10
,
12
5
,0
),…(9分)
BC
=(-
9
5
,
12
5
,0)
,
BM
=(-
5
2
,0,
5
3
2
)
,
PM
=(
5
2
,0,
5
3
2
)
,
PC
=(
16
5
,
12
5
,0)
,
∴設(shè)平面BMC的法向量
m
=(x,y,z)
,
則由
BC
m
=-
9
5
x+
12
5
y=0
BM
m
=-
5
2
x+
5
3
2
z=0

取x=12,得
m
=(12,9,4
3
)

設(shè)平面PMC的一個(gè)法向量為
n
=(a,b,c)

PM
n
=
5
2
a+
5
3
2
c=0
PC
n
=
16
5
a+
12
5
b=0
,取a=3,得
n
=(3,-4,-
3
)

∴cos<
m
n
>=
36-36-12
273
38
=-
2
39
91

∵二面角P-MC-B的平面角是鈍角,
∴二面角P-MC-B的余弦值為-
2
39
91
.(12分)
點(diǎn)評(píng):本題考查直線與平面垂直的證明,考查二面角的余弦值的求法,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

-401是等差數(shù)列-5,-9,-13…的第(  )項(xiàng).
A、98B、99
C、100D、101

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三棱柱A1B1C1-ABC中,A1A⊥平面ABC,A1A=AB=AC=2,BC=2
2
,點(diǎn)D是BC的中點(diǎn).
(Ⅰ)求證:A1B∥平面AC1D
(Ⅱ)求點(diǎn)B到平面AC1D的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,設(shè)四棱錐E-ABCD的底面為菱形,且∠ABC=60°,P為DE上一點(diǎn) 若BE∥平面PAC.
(1)證明:P為ED中點(diǎn);
(2)若AB=EC=2,AE=BE=
2
,證明:平面EAB⊥平面ABCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,DA⊥平面ABC,DA∥PC,∠ACB=90°,AC=AD=BC=1,PC=2,E為PB的中點(diǎn).
(Ⅰ)求證:DE∥平面ABC;
(Ⅱ)求二面角E-CD-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在梯形ABCD中,∠ADC=θ,AD=a,BC=b,CD=m,求梯形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓M:
x2
a2
+
y2
b2
=1(a>b>0)的長(zhǎng)軸長(zhǎng)為4
2
,且與橢圓
x2
2
+
y2
4
=1有相同的離心率.
(Ⅰ)求橢圓M的方程;
(Ⅱ)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與M有兩個(gè)交點(diǎn)A、B,且
OA
OB
?若存在,寫出該圓的方程,并求|
AB
|的取值范圍,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知直線l的參數(shù)方程為
x=1-
2
2
t
y=2+
2
2
t
(t為參數(shù)),直線l與拋物線
x=4t2
y=4t
(t為參數(shù))交于A,B兩點(diǎn),求線段AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖:已知長(zhǎng)方體ABCD-A1B1C1D1的底面ABCD是邊長(zhǎng)為2的正方形,高AA1=2
2
,P為CC1的中點(diǎn),AC與BD交于O點(diǎn).
(Ⅰ)求證:BD⊥平面AA1C1C;
(Ⅱ)求證:AC1∥平面PBD;
(Ⅲ)求三棱錐A1-BOP的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案