雙曲線x2+my2=1的虛軸長是實軸長的2倍,則雙曲線的漸近線方程為( 。
A.y=±2xB.y=±
1
2
x
C.y=±
2
x
D.y=±
2
2
x
雙曲線x2+my2=1中a=1,b=
-
1
m

∵雙曲線x2+my2=1的虛軸長是實軸長的2倍,
2
-
1
m
=4
,
∴m=-
1
4
,
∴雙曲線方程為x2-
y2
4
=1,
∴雙曲線的漸近線方程為y=±2x.
故選A.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:單選題

點P是雙曲線C1
x2
a2
-
y2
b2
=1(a>0,b>0)
與圓C2:x2+y2=a2+b2的一個交點,且2∠PF1F2=∠PF2F1,其中F1、F2分別為雙曲線C1的左右焦點,則雙曲線C1的離心率為(  )
A.
3
+1
B.
3
+1
2
C.
5
+1
2
D.
5
-1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

我們把離心率為e=
5
+1
2
的雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)稱為黃金雙曲線.如圖,A1,A2是右圖雙曲線的實軸頂點,B1,B2是虛軸的頂點,F(xiàn)1,F(xiàn)2是左右焦點,M,N在雙曲線上且過右焦點F2,并且MN⊥x軸,給出以下幾個說法:
①雙曲線x2-
2y2
5
+1
=1是黃金雙曲線;
②若b2=ac,則該雙曲線是黃金雙曲線;
③如圖,若∠F1B1A2=90°,則該雙曲線是黃金雙曲線;
④如圖,若∠MON=90°,則該雙曲線是黃金雙曲線.
其中正確的是( 。
A.①②④B.①②③C.②③④D.①②③④

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

雙曲線
x2
10
-
y2
6
=1的焦點坐標是(  )
A.(-2,0),(2,0)B.(0,-2),(0,2)C.(0,-4),(0,4)D.(-4,0),(4,0)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)雙曲線C:
x2
a2
-y2=1(a>0)
與直線l:x+y=1交于兩個不同的點A,B,求雙曲線C的離心率e的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知雙曲線
x2
a2
-y2=1(a>0)的一個焦點與拋物線x=
1
8
y2的焦點重合,則此雙曲線的離心率為( 。
A.
3
3
2
B.
3
C.
2
3
3
D.
4
3
3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知雙曲線的焦點在y軸上,實軸長為8,虛軸長為6,則該雙曲線的漸近線方程為(  )
A.y=±
4
3
x
B.y=±
3
4
x
C.y=±
5
4
x
D.y=±
5
3
x

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

雙曲線具有光學性質(zhì)“從雙曲線的一個焦點發(fā)出的光線被雙曲線反射后,反射光線的反向延長線都匯聚到雙曲線的另一焦點”,由此可得如下結(jié)論,過雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)右之上的點P處的切線平分∠F1PF2,現(xiàn)過原點O作的平行線交F1P于點M,則|MP|的長度為( 。
A.a(chǎn)B.b
C.
a2+b2
D.與P點位置有關(guān)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知雙曲線C1:2x2-y2=8,雙曲線C2滿足:①C1與C2有相同的漸近線,②C2的焦距是C1的焦距的兩倍,③C2的焦點在y軸上,則C2的方程是______.

查看答案和解析>>

同步練習冊答案