已知雙曲線的焦點(diǎn)在y軸上,實軸長為8,虛軸長為6,則該雙曲線的漸近線方程為(  )
A.y=±
4
3
x
B.y=±
3
4
x
C.y=±
5
4
x
D.y=±
5
3
x
∵雙曲線的焦點(diǎn)在y軸上,
∴設(shè)雙曲線方程為
y2
a2
-
x2
b2
=1
,(a>0,b>0)
∵實軸長為8,虛軸長為6,
∴a=4,b=3,
∴雙曲線方程為:
y2
16
-
x2
9
=1

∴雙曲線的漸近線方程為
y2
16
-
x2
9
=0
,
整理,得y=±
4
3
x.
故選:A.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

一對共軛雙曲線的離心率分別為e1和e2,則e1+e2的最小值為( 。
A.
2
B.2C.2
2
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

焦點(diǎn)在x軸上,a=4,b=3的雙曲線標(biāo)準(zhǔn)方程為(  )
A.
x2
16
-
y2
9
=1
B.
x2
9
-
y2
16
=1
C.
x2
25
-
y2
9
=1
D.
x2
9
-
y2
25
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線x2+my2=1的虛軸長是實軸長的2倍,則雙曲線的漸近線方程為(  )
A.y=±2xB.y=±
1
2
x
C.y=±
2
x
D.y=±
2
2
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的一個焦點(diǎn)作圓x2+y2=a2的兩條切線,切點(diǎn)分別為A、B.若∠AOB=120°(O是坐標(biāo)原點(diǎn)),則雙曲線C的離心率為 ______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線
x2
9
-
y2
16
=1
的焦點(diǎn)到漸近線的距離等于( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
與橢圓
x2
9
+
y2
5
=1
有公共焦點(diǎn),右焦點(diǎn)為F,且兩支曲線在第一象限的交點(diǎn)為P,若|PF|=2,則雙曲線的離心率為( 。
A.5B.
3
C.
1
2
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知點(diǎn)P是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
右支上一點(diǎn),F(xiàn)1、F2分別是雙曲線的左、右焦點(diǎn).I為△PF1F2內(nèi)心,若S△IPF1=S△IPF2+
1
2
S△IF1F2
,則雙曲線的離心率為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

雙曲線
x2
4
-
y2
12
=1
上一點(diǎn)P到右焦點(diǎn)F的距離為8,則P到右準(zhǔn)線的距離為______.

查看答案和解析>>

同步練習(xí)冊答案