數(shù)列{an}的前n項和為Sn=n2-2n-1,則數(shù)列{an}的通項公式an=
 
考點:數(shù)列的函數(shù)特性
專題:等差數(shù)列與等比數(shù)列
分析:利用“當(dāng)n=1時,a1=S1;當(dāng)n≥2時,an=Sn-Sn-1”即可得出.
解答: 解:當(dāng)n≥2時,an=Sn-Sn-1=n2-2n-1-[(n-1)2-2(n-1)-1]=2n-3,
當(dāng)n=1時,a1=S1=1-2-1=-2,不適合上式,
∴數(shù)列{an}的通項公式an=
-2,(n=1)
2n-3,(n>1)
點評:本題考查數(shù)列{an}的通項公式與前n項和為Sn的關(guān)系式,熟練掌握“當(dāng)n=1時,a1=S1;當(dāng)n≥2時,an=Sn-Sn-1”是解題的關(guān)鍵,注意驗證n=1時是否適合.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y2=2px(p>0)的焦點為F,準(zhǔn)線為l,過F的直線交拋物線于A(x1,y1)、B(x2,y2)兩點,AC垂直準(zhǔn)線于C,BD垂直準(zhǔn)線于D,又O為原點.
(1)證明:CF⊥DF      
(2)A、O、D三點共線    
(3)
1
AF
+
1
BF
=
2
p

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義函數(shù)f(x)=[x•[x]],其中[x]表示不超過x的最大整數(shù),當(dāng)x∈[0,n)(n∈N*)時,設(shè)函數(shù)f(x)的值域為集合A,記A中的元素個數(shù)為an,則
an+49
n
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果三棱錐A-BCD的底面BCD是正三角形,頂點A在底面BCD上的射影是△BCD的中心,則這樣的三棱錐稱為正三棱錐.給出下列結(jié)論:
①正三棱錐所有棱長都相等;
②正三棱錐至少有一組對棱(如棱AB與CD)不垂直;
③當(dāng)正三棱錐所有棱長都相等時,該棱錐內(nèi)任意一點到它的四個面的距離之和為定值;
④若正三棱錐所有棱長均為2
2
,則該棱錐外接球的表面積等于12π.
⑤若正三棱錐A-BCD的側(cè)棱長均為2,一個側(cè)面的頂角為40°,過點B的平面分別交側(cè)棱AC,AD于M,N.則△BMN周長的最小值等于2
3

以上結(jié)論正確的是
 
(寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線經(jīng)過點P(-2,3)且傾斜角為45°,求直線的斜截式方程
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,若a2-b2=
2
bc,sinC=2
2
sinB,則A=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

焦點在x軸上,短軸長為2,離心率為
2
2
,橢圓C的方程
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知中心在原點的橢圓C的右焦點為F(1,0),離心率等于
1
2
,則C的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=π,則f(2π)=(  )
A、2πB、4πC、πD、x

查看答案和解析>>

同步練習(xí)冊答案