【題目】已知向量 =(m,cos2x), =(sin2x,n),設(shè)函數(shù)f(x)= ,且y=f(x)的圖象過點(diǎn)( , )和點(diǎn)( ,﹣2).
(1)求m,n的值;
(2)將y=f(x)的圖象向左平移φ(0<φ<π)個單位后得到函數(shù)y=g(x)的圖象.若y=g(x)的圖象上各最高點(diǎn)到點(diǎn)(0,3)的距離的最小值為1,求y=g(x)的單調(diào)增區(qū)間.

【答案】
(1)解:已知: , ,

則: =msin2x+ncos2x,

y=f(x)的圖象過點(diǎn)y=f(x)的圖象過點(diǎn)( )和點(diǎn)( ,﹣2).

則: 解得: ,

即:m= ,n=1

故答案為: m= ,n=1


(2)解:由(1)得: = ,f(x)向左平移φ個單位得到:

g(x)=2sin(2x+2Φ+ ),

設(shè)g(x)的對稱軸x=x0,最高點(diǎn)的坐標(biāo)為:(x0,2)點(diǎn)(0,3)的距離的最小值為1,則: ,

則:g(0)=2,

解得:Φ= ,

所以:g(x)=2sin(2x+ )=2cos2x.

令:﹣π+2kπ≤2x≤2kπ (k∈Z)

則:單調(diào)遞增區(qū)間為:[ ](k∈Z)

故答案為:單調(diào)遞增區(qū)間為:[ ](k∈Z)


【解析】(1)首先根據(jù)向量的數(shù)量積的坐標(biāo)運(yùn)算求得f(x)=msin2x+ncos2x,進(jìn)一步根據(jù)圖象經(jīng)過的點(diǎn)求得:m和n的值.(2)由(1)得: = ,f(x)向左平移φ個單位得到g(x)=2sin(2x+2Φ+ )設(shè)g(x)的對稱軸x=x0 , 最高點(diǎn)的坐標(biāo)為:(x0 , 2)點(diǎn)(0,3)的距離的最小值為1,則:g(x)=2sin(2x+ )=2cos2x,進(jìn)一步求得單調(diào)區(qū)間.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識可以得到問題的答案,需要掌握圖象上所有點(diǎn)向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(縮短)到原來的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(縮短)到原來的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)Sn是數(shù)列{an}的前n項(xiàng)和,已知a1=3,an+1=2Sn+3(n∈N)
(I)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)令bn=(2n﹣1)an , 求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若將函數(shù)y=sin2x的圖象向左平移θ, 個單位后所得圖象關(guān)于y軸對稱,則θ=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,則輸出的結(jié)果為(
A.2
B.1
C.0
D.﹣1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 , ,向量 的夾角為90°,點(diǎn)C在AB上,且∠AOC=30°.設(shè) =m +n (m,n∈R),求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}滿足a2=3,a3+a5=2
(1)求{an}的通項(xiàng)公式;
(2)求{an}的前n項(xiàng)和Sn及Sn的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠甲、乙、丙三個車間生產(chǎn)了同一種產(chǎn)品,數(shù)量分別為120件,80件,60件.為了解它們的產(chǎn)品質(zhì)量是否存在顯著差異,用分層抽樣方法抽取了一個容量為n的樣本進(jìn)行調(diào)查,其中從丙車間的產(chǎn)品中抽取了3件,則n=(
A.9
B.10
C.12
D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=f(x)是定義域?yàn)镽的偶函數(shù),且在(0,+∞)上單調(diào)遞減,則( )
A.f(﹣π)>f(﹣1)>f(
B.f(﹣1)>f(﹣π)>f(
C.f(﹣π)>f( )>f(﹣1)
D.f(﹣1)>f( )>f(﹣π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,一個矩形花園里需要鋪兩條筆直的小路,已知矩形花園長AD=5m,寬AB=3m,其中一條小路定為AC,另一條小路過點(diǎn)D,問如何在BC上找到一點(diǎn)M,使得兩條小路AC與DM相互垂直?

查看答案和解析>>

同步練習(xí)冊答案