||=1,||=,=0,點C在∠AOB內,且∠AOC=30°,設=m+n(m、n∈R),則等于( )
A.
B.3
C.
D.
【答案】分析:將向量沿方向利用平行四邊形原則進行分解,構造出三角形,由題目已知,可得三角形中三邊長及三個角,然后利用正弦定理解三角形即可得到答案.此題如果沒有點C在∠AOB內的限制,應該有兩種情況,即也可能為OC在OA順時針方向30°角的位置,請大家注意分類討論,避免出錯.
解答:解:法一:如圖所示:=+,設=x,則==
==3.

法二:如圖所示,建立直角坐標系.
=(1,0),=(0,),
=m+n
=(m,n),
∴tan30°==
=3.
故選B
點評:對一個向量根據(jù)平面向量基本定理進行分解,關鍵是要根據(jù)平行四邊形法則,找出向量在基底兩個向量方向上的分量,再根據(jù)已知條件構造三角形,解三角形即可得到分解結果.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若平面向量
b
與向量
a
=(1,-2)的夾角是180°,且|
b
|=3
5
,則
b
=( 。
A、(-3,6)
B、(3,-6)
C、(6,-3)
D、(-6,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

12、關于x的方程|x2-4x+3|-a=0有三個不相等的實數(shù)根,則實數(shù)a的值是
1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

15、已知集合A={1,2,3,m},集合B={4,7,a4,a2+3a},其中m∈N*,a∈N*,x∈A,y∈B.f:x→y=3x+1是從集合A到集合B的函數(shù),求m,a,A,B

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|2≤x≤8},B={x|1≤x≤6},C={x|ax-1=0},U=R.
(1)求A∪B;
(2)求(?UA)∩B;
(3)如果A∩C=C,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

171、在各項均不為零的等差數(shù)列{an}中,若an+1-an2+an-1=0(n≥2,n∈N*),則S2n-1-4n=
-2

查看答案和解析>>

同步練習冊答案