分析 (Ⅰ)由已知求出sin2θ的范圍,進一步求出($\overrightarrow{a}+\overrightarrow$)2的范圍,則答案可求;
(Ⅱ)由|$\overrightarrow{a}$|-|$\overrightarrow$|=-$\frac{2}{5}$,可得sinθ+cosθ=$\frac{1}{5}$,得sin2$θ=-\frac{24}{25}$,把tanθ-$\frac{1}{tanθ}$化切為弦得答案.
解答 解:(Ⅰ)∵$\frac{π}{2}<θ<π$,∴π<2θ<2π,得sin2θ∈[-1,0),
∴($\overrightarrow{a}+\overrightarrow$)2=(2,2sin2θ)2=4(1+sin22θ)∈(4,8],
因此|$\overrightarrow{a}+\overrightarrow$|的取值范圍是$({2,2\sqrt{2}}]$;
(Ⅱ)∵$\frac{π}{2}<θ<π$,∴sinθ>0,cosθ<0,
∴$|\overrightarrow{a}|-|\overrightarrow|=\sqrt{(1+cos2θ)^{2}+si{n}^{2}2θ}$$-\sqrt{(1-cos2θ)^{2}+si{n}^{2}2θ}$
=$\sqrt{2(1+cos2θ)}-\sqrt{2(1-cos2θ)}$=-2cosθ-2sinθ=-$\frac{2}{5}$.
故sinθ+cosθ=$\frac{1}{5}$,得sin2$θ=-\frac{24}{25}$,
又$\frac{π}{2}<θ<π$,且sinθ+cosθ>0.
故$cos2θ<0⇒cos2θ=-\sqrt{1-{{({-\frac{24}{25}})}^2}}=-\frac{7}{25}$.
∴$tanθ-\frac{1}{tanθ}=\frac{sinθ}{cosθ}-\frac{cosθ}{sinθ}=\frac{{{{sin}^2}θ-{{cos}^2}θ}}{sinθcosθ}=-\frac{2cos2θ}{sin2θ}=\frac{{\frac{14}{25}}}{{-\frac{24}{25}}}=-\frac{7}{12}$.
點評 本題考查平面向量的數(shù)量積運算,考查了向量模的求法,訓(xùn)練了利用同角三角函數(shù)基本關(guān)系式求三角函數(shù)的值,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{3}}}{3}$ | B. | -$\frac{{\sqrt{3}}}{3}$ | C. | $\sqrt{3}$ | D. | -$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | an=6n+8 | B. | an=6n+5 | C. | an=3n+8 | D. | an=3n+5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 16 | B. | 17 | C. | 19 | D. | 15 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com