12.函數(shù)f(x)=x2-2ax+2的單調(diào)減區(qū)間為(-∞,4],則a=4.

分析 求出二次函數(shù)的對稱軸,利用單調(diào)區(qū)間,列出關(guān)系式求解即可.

解答 解:函數(shù)f(x)=x2-2ax+2的單調(diào)減區(qū)間為(-∞,4],
可得$-\frac{-2a}{2}$=4,即a=4.
故答案為:4.

點(diǎn)評 本題考查二次函數(shù)的簡單性質(zhì)的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知直線l:2x+4y+3=0,P為l上的動(dòng)點(diǎn),O是坐標(biāo)原點(diǎn),若點(diǎn)Q滿足:2$\overrightarrow{OQ}=\overrightarrow{QP}$,則點(diǎn)Q的軌跡方程是( 。
A.2x+4y+1=0B.2x+4y+3=0C.2x+4y+2=0D.x+2y+1=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.直線l經(jīng)過橢圓$\frac{x^2}{a^2}+\frac{y^2}{3}=1({a>\sqrt{3}})$的一個(gè)焦點(diǎn)和一個(gè)頂點(diǎn),若橢圓中心到l的距離為其短軸長的$\frac{1}{4}$,則該橢圓的長軸長為( 。
A.$\frac{8}{3}$B.4C.$\frac{16}{3}$D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若直線ax+2y+2=0與直線x-y-2=0垂直,則a=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.函數(shù)f(x)=$\left\{\begin{array}{l}{-x,x≥0}\\{{x}^{2},x<0}\end{array}\right.$,則f[f(1)]的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列四個(gè)命題:
①“等邊三角形的三個(gè)內(nèi)角均為60°”的逆命題;
②“若k>0,則方程x2+2x-k=0有實(shí)根”的逆否命題;
③“全等三角形的面積相等”的否命題;
④“若$\overrightarrow a$•$\overrightarrow b$=$\overrightarrow a$•$\overrightarrow c$,則$\overrightarrow a$⊥$(\overrightarrow b-\overrightarrow c)$”的否命題,
其中真命題的個(gè)數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若{x|x2≤a,a∈R}∪∅=∅,則a的取值范圍是( 。
A.[0,+∞)B.(0,+∞)C.(-∞,0]D.(-∞,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在直角坐標(biāo)系xOy中,B(-1,0),C(1,0),動(dòng)點(diǎn)A滿足$\frac{|AB|}{|AC|}$=m(m>0且m≠1).
(1)求動(dòng)點(diǎn)A的軌跡方程,并說明軌跡是什么曲線;
(2)若m=$\sqrt{3}$,點(diǎn)P為動(dòng)點(diǎn)A的軌跡曲線上的任意一點(diǎn),過點(diǎn)P作圓:x2+(y-2)2=1的切線,切點(diǎn)為Q.試探究平面內(nèi)是否存在定點(diǎn)R,使$\frac{|PQ|}{|PR|}$為定值,若存在,請求出點(diǎn)R的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.解關(guān)于x的不等式:
(1)3x2-7x>10
(2)$\frac{x-1}{2x+1}≤0$.

查看答案和解析>>

同步練習(xí)冊答案