已知函數(shù)f(x)=ex-ax-1(a∈R).
(1)討論f(x)=ex-ax-1(a∈R)的單調(diào)性;
(2)若a=1,求證:當(dāng)x≥0時(shí),f(x)≥f(-x).
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:綜合題,導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)求導(dǎo)數(shù)f′(x),分a≤0,a>0兩種情況討論解不等式f′(x)>0,f′(x)<0可得函數(shù)的單調(diào)性;
(2)令g(x)=f(x)-f(-x)=ex-
1
ex
-2x,利用導(dǎo)數(shù)可證明g(x)≥0.
解答: (1)解:f′(x)=ex-a.
當(dāng)a≤0時(shí),f′(x)≥0恒成立,f(x)在R上單調(diào)遞增;
當(dāng)a>0時(shí),令f′(x)>0,得x>lna;令f′(x)<0,得x<lna.
綜上,當(dāng)a≤0時(shí),f(x)在(-∞,+∞)上單調(diào)遞增;
當(dāng)a>0時(shí),增區(qū)間是(lna,+∞),減區(qū)間是(-∞,lna).
(2)證明:令g(x)=f(x)-f(-x)=ex-
1
ex
-2x,
則g′(x)=ex+e-x-2≥2
exe-x
-2=0,
∴g(x)在[0,+∞)上是增函數(shù),∴g(x)≥g(0)=0,
∴f(x)≥f(-x).
點(diǎn)評(píng):該題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最值,考查分類討論思想,證明(2)問的關(guān)鍵是合理構(gòu)造函數(shù)借助導(dǎo)數(shù)解決問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

布袋中有六個(gè)只有顏色不同,其它都相同的球,其中紅球有4個(gè),白球有2個(gè).現(xiàn)在從中隨機(jī)抽取2個(gè)球,設(shè)其中白球個(gè)數(shù)為X.
(1)求X=1時(shí)的概率;
(2)求E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2
(Ⅰ)寫出函數(shù)f(x)的導(dǎo)函數(shù),并用定義證明;
(Ⅱ)求函數(shù)f(x)圖象在點(diǎn)P(1,f(1))處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二項(xiàng)式(x-
2
x
n展開式中第二項(xiàng)的系數(shù)a2與第三項(xiàng)的系數(shù)a3滿足:a3+9a2=0.
(Ⅰ)求n的值;
(Ⅱ)記展開式中二項(xiàng)式系數(shù)最大的項(xiàng)為f(x),求f(4)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)若f(α-
π
3
)=4cosα,求
cos(
π
2
-α)sin(π+α)
cos(4π+α)sin(3π-α)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某企業(yè)有3個(gè)分廠生產(chǎn)同一種產(chǎn)品,第一、二、三分廠的產(chǎn)量之比為2:3:5,用分層抽樣方法(每個(gè)分廠的產(chǎn)品為一層)從3個(gè)分廠生產(chǎn)的產(chǎn)品中共抽取100件作樣本,則從第二分廠抽取的產(chǎn)品的數(shù)量為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=1+sin
x
2
,x∈(-3π,π),若不等式a≤f(x)≤b的解集為[a,b],則a+b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=3sin(
1
2
x-
π
3
)的最小正周期為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算
0
(cosx+ex)dx=
 

查看答案和解析>>

同步練習(xí)冊答案