【題目】在平面直角坐標(biāo)系內(nèi),已知A(1,a),B(﹣5,﹣3),C(4,0);
(1)當(dāng)a∈( ,3)時,求直線AC的傾斜角α的取值范圍;
(2)當(dāng)a=2時,求△ABC的BC邊上的高AH所在直線方程l.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,滿足x2+y2≤1,x≥0,y≥0的點P(x,y)的集合對應(yīng)的平面圖形的面積為 ;類似的,在空間直角坐標(biāo)系O﹣xyz中,滿足x2+y2+z2≤1,x≥0,y≥0,z≥0的點P(x,y,z)的集合對應(yīng)的空間幾何體的體積為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若關(guān)于的不等式恒成立,求整數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB切⊙O于點B,直線AO交⊙O于D,E兩點,BC⊥DE,垂足為C.
(1)證明:∠CBD=∠DBA;
(2)若AD=3DC,BC= ,求⊙O的直徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若離散型隨機(jī)變量X的分布列如圖,則常數(shù)c的值為( )
X | 0 | 1 |
P | 9c2﹣c | 3﹣8c |
A. 或
B.
C.
D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的多面體,它的正視圖為直角三角形,側(cè)視圖為正三角形,俯視圖為正方形(尺寸如圖所示),E為VB的中點.
(1)求證:VD∥平面EAC;
(2)求二面角A﹣VB﹣D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給n個自上而下相連的正方形著黑色或白色.當(dāng)n≤4時,在所有不同的著色方案中,黑色正方形互不相鄰的著色方案如圖所示,由此推斷,當(dāng)n=6時,至少有兩個黑色正方形相鄰的著色方案共有( )種.
A.21
B.32
C.43
D.54
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在點處的切線方程為,求a,b的值;
(2)如果是函數(shù)的兩個零點, 為函數(shù)的導(dǎo)數(shù),證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知y=f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時,f(x)=x+x2 .
(1)求x<0時,f(x)的解析式;
(2)問是否存在這樣的非負(fù)數(shù)a,b,當(dāng)x∈[a,b]時,f(x)的值域為[4a﹣2,6b﹣6]?若存在,求出所有的a,b值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com