點(diǎn)P(4,4),圓C:(x-1)2+y2=5與橢圓E:
x2
18
+
y2
2
=1
有一個(gè)公共點(diǎn)A(3,1),F(xiàn)1、F2分別是橢圓左、右焦點(diǎn),直線(xiàn)PF1與圓C相切.設(shè)Q為橢圓E上的一個(gè)動(dòng)點(diǎn),求
AP
AQ
的取值范圍.
∵A(3,1),P(4,4),
AP
=(1,3)
,
設(shè)Q(x,y),則
AQ
=(x-3,y-1)
,
AP
AQ
=(x-3)+3(y-1)=x+3y-6

x2
18
+
y2
2
=1
,
即x2+(3y)2=18,而x2+(3y)2≥2|x|•|3y|,
∴-18≤6xy≤18.則(x+3y)2=x2+(3y)2+6xy=18+6xy的取值范圍是[0,36].
∴x+3y的取值范圍是[-6,6],
因此,
AP
AQ
的取值范圍是[-12,0].
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如果橢圓
x2
36
+
y2
9
=1
的弦AB被點(diǎn)M(x0,y0)平分,設(shè)直線(xiàn)AB的斜率為k1,直線(xiàn)OM(O為坐標(biāo)原點(diǎn))的斜率為k2,則k1•k2=( 。
A.4B.
1
4
C.-1D.-
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)F1、F2為橢圓
x2
9
+
y2
4
=1
的兩個(gè)焦點(diǎn),P為橢圓上一點(diǎn),已知P、F1、F2是一個(gè)直角三角形的三個(gè)頂點(diǎn),且|PF1|>|PF2|,則
|PF1|
|PF2|
的值為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知直線(xiàn)l:y=2x-4交拋物線(xiàn)y2=4x于A、B兩點(diǎn),試在拋物線(xiàn)AOB這段曲線(xiàn)上求一點(diǎn)P,使△ABP的面積最大,并求這個(gè)最大面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若直線(xiàn)mx+ny=4和⊙O:x2+y2=4相交,則點(diǎn)P(m,n)與橢圓C:
x2
4
+
y2
3
=1的位置關(guān)系為( 。
A.點(diǎn)P在橢圓C內(nèi)B.點(diǎn)P在橢圓C上
C.點(diǎn)P在橢圓C外D.以上三種均有可能

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知雙曲線(xiàn)
x2
m
-
y2
n
=1
(mn≠0)的離心率為2,有一個(gè)焦點(diǎn)恰好是拋物線(xiàn)y2=4x的焦點(diǎn),則此雙曲線(xiàn)的漸近線(xiàn)方程是(  )
A.
3
x±y=0
B.
3
y=0
C.3x±y=0D.x±3y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知線(xiàn)段AB的端點(diǎn)B的坐標(biāo)是(1,2),端點(diǎn)A在圓(x+1)2+y2=4上運(yùn)動(dòng),點(diǎn)M是AB的中點(diǎn).
(1)若點(diǎn)M的軌跡為曲線(xiàn)C,求此曲線(xiàn)的方程;
(2)設(shè)直線(xiàn)l:x+y+3=0,求曲線(xiàn)C上的點(diǎn)到直線(xiàn)l距離的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
過(guò)點(diǎn)(0,4),離心率為
3
5

(1)求C的方程;
(2)求過(guò)點(diǎn)(3,0)且斜率為
4
5
的直線(xiàn)被C所截線(xiàn)段的長(zhǎng)度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,橢圓C1
x2
a2
+
y2
b2
=1
(a>b>0)和圓C2:x2+y2=b2,已知圓C2將橢圓C1的長(zhǎng)軸三等分,橢圓C1右焦點(diǎn)到右準(zhǔn)線(xiàn)的距離為
2
4
,橢圓C1的下頂點(diǎn)為E,過(guò)坐標(biāo)原點(diǎn)O且與坐標(biāo)軸不重合的任意直線(xiàn)l與圓C2相交于點(diǎn)A、B.
(1)求橢圓C1的方程;
(2)若直線(xiàn)EA、EB分別與橢圓C1相交于另一個(gè)交點(diǎn)為點(diǎn)P、M.
①求證:直線(xiàn)MP經(jīng)過(guò)一定點(diǎn);
②試問(wèn):是否存在以(m,0)為圓心,
3
2
5
為半徑的圓G,使得直線(xiàn)PM和直線(xiàn)AB都與圓G相交?若存在,請(qǐng)求出所有m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案