分析 易得AF1F2是以A為直角定點(diǎn)的直角三角形,AF1=2a-c,AF2=c.由勾股定理得,(2a-c)2+c2=(2c)2⇒2ac+c2-a2=0⇒離心率e.
解答 解:A是橢圓上不同于頂點(diǎn)的任一點(diǎn),$∠A{F_1}{F_2}={30^0},AO=O{F_2}$,
∴△AF1F2是以A為直角定點(diǎn)的直角三角形,∴AF1=2a-c,AF2=c.
由勾股定理得,(2a-c)2+c2=(2c)2⇒,2ac+c2-a2=0⇒離心率e=$\sqrt{3}-1$.
故答案為:$\sqrt{3}-1$.
點(diǎn)評 本題考查了橢圓的離心率,多用定義及平面幾何的知識,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [6-2$\sqrt{6}$,9] | B. | [6-2$\sqrt{6}$,11] | C. | [6+2$\sqrt{6}$,9] | D. | [6+2$\sqrt{6}$,11] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x∈Z,x3≥1 | B. | ?x∉Z,x3≥1 | C. | ?x∈Z,x3≥1 | D. | ?x∉Z,x3≥1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 0或2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com