【題目】已知等差數(shù)列滿足,.
(1)求的通項公式;
(2)設等比數(shù)列滿足,,問:與數(shù)列的第幾項相等?
(3)若數(shù)列,求數(shù)列的前項和.
【答案】(1); (2); (3).
【解析】
(1)由,求得公差,再由,求得,結(jié)合等差數(shù)列的通項公式,即可求解;
(2)由,,求得等比數(shù)列的首項和公比,利用等比數(shù)列的通項公式求得,結(jié)合(1),即可求解;
(3)由(1)、(2)求得,利用等差數(shù)列和等比數(shù)列的前n項和公式,即可求解.
(1)設等差數(shù)列的公差為,
因為,所以,
又因為,即,解得,
所以數(shù)列的通項公式為.
(2)設等比數(shù)列的公比為,
因為,,所以,解得,
所以,則,
令,解得,即是數(shù)列的第63項相等.
(3)由(1)、(2)可知,,所以,
所以數(shù)列的前項和
.
科目:高中數(shù)學 來源: 題型:
【題目】下面是甲、乙兩位同學高三上學期的5次聯(lián)考數(shù)學成績,現(xiàn)在只知其從第1次到第5次分數(shù)所在區(qū)間段分布的條形圖(從左至右依次為第1至第5次),則從圖中可以讀出一定正確的信息是( )
A.甲同學的成績的平均數(shù)大于乙同學的成績的平均數(shù)
B.甲同學的成績的方差大于乙同學的成績的方差
C.甲同學的成績的極差小于乙同學的成績的極差
D.甲同學的成績的中位數(shù)小于乙同學的成績的中位數(shù)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2015年我國將加快階梯水價推行,原則是“保基本、建機制、促節(jié)約”,其中“;”是指保證至少80%的居民用戶用水價格不變.為響應國家政策,制定合理的階梯用水價格,某城市采用簡單隨機抽樣的方法分別從郊區(qū)和城區(qū)抽取5戶和20戶居民的年人均用水量進行調(diào)研,抽取的數(shù)據(jù)的莖葉圖如下(單位:噸):
(1)在郊區(qū)的這5戶居民中隨機抽取2戶,求其年人均用水量都不超過30噸的概率;
(2)設該城市郊區(qū)和城區(qū)的居民戶數(shù)比為,現(xiàn)將年人均用水量不超過30噸的用戶定義為第一階梯用戶,并保證這一梯次的居民用戶用水價格保持不變.試根據(jù)樣本估計總體的思想,分析此方案是否符合國家“保基本”政策.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從0、2、4中取一個數(shù)字,從1、3、5中取兩個數(shù)字,組成無重復數(shù)字的三位數(shù),則所有不同的三位數(shù)的個數(shù)是______(用數(shù)字作答)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合M=,對它的非空子集A,可將A中每個元素K都乘以再求和(如A=,可求得和為),則對M的所有非空子集,這些和的總和是__________________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,直線的參數(shù)方程為 (t為參數(shù)),直線的參數(shù)方程為 (為參數(shù)).設與的交點為,當變化時,的軌跡為曲線
(1)寫出的普通方程;
(2)以坐標原點為極點,軸正半軸為極軸建立極坐標系,設,為與的交點,求的極徑.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設拋物線的焦點為,過點的直線與拋物線相交于兩點,與拋物線的準線相交于點, ,則與的面積之比__________.
【答案】
【解析】
由題意可得拋物線的焦點的坐標為,準線方程為。
如圖,設,過A,B分別向拋物線的準線作垂線,垂足分別為E,N,則
,解得。
把代入拋物線,解得。
∴直線AB經(jīng)過點與點,
故直線AB的方程為,代入拋物線方程解得。
∴。
在中, ,
∴
∴。答案:
點睛:
在解決與拋物線有關的問題時,要注意拋物線的定義在解題中的應用。拋物線定義有兩種用途:一是當已知曲線是拋物線時,拋物線上的點M滿足定義,它到準線的距離為d,則|MF|=d,可解決有關距離、最值、弦長等問題;二是利用動點滿足的幾何條件符合拋物線的定義,從而得到動點的軌跡是拋物線.
【題型】填空題
【結(jié)束】
17
【題目】已知三個內(nèi)角所對的邊分別是,若.
(1)求角;
(2)若的外接圓半徑為2,求周長的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線=1(a>0,b>0)的右焦點為F(c,0).
(1)若雙曲線的一條漸近線方程為y=x且c=2,求雙曲線的方程;
(2)以原點O為圓心,c為半徑作圓,該圓與雙曲線在第一象限的交點為A,過A作圓的切線,斜率為-,求雙曲線的離心率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com