【題目】已知等差數(shù)列滿足,.

1)求的通項公式;

2)設等比數(shù)列滿足,,問:與數(shù)列的第幾項相等?

3)若數(shù)列,求數(shù)列的前項和.

【答案】1; 2; 3.

【解析】

1)由,求得公差,再由,求得,結(jié)合等差數(shù)列的通項公式,即可求解;

2)由,求得等比數(shù)列的首項和公比,利用等比數(shù)列的通項公式求得,結(jié)合(1),即可求解;

3)由(1)、(2)求得,利用等差數(shù)列和等比數(shù)列的前n項和公式,即可求解.

1)設等差數(shù)列的公差為,

因為,所以

又因為,即,解得

所以數(shù)列的通項公式為.

2)設等比數(shù)列的公比為,

因為,,所以,解得,

所以,則,

,解得,即是數(shù)列的第63項相等.

3)由(1)、(2)可知,,所以,

所以數(shù)列的前項和

.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】下面是甲、乙兩位同學高三上學期的5次聯(lián)考數(shù)學成績,現(xiàn)在只知其從第1次到第5次分數(shù)所在區(qū)間段分布的條形圖(從左至右依次為第1至第5次),則從圖中可以讀出一定正確的信息是(

A.甲同學的成績的平均數(shù)大于乙同學的成績的平均數(shù)

B.甲同學的成績的方差大于乙同學的成績的方差

C.甲同學的成績的極差小于乙同學的成績的極差

D.甲同學的成績的中位數(shù)小于乙同學的成績的中位數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2015年我國將加快階梯水價推行,原則是保基本、建機制、促節(jié)約,其中;是指保證至少80%的居民用戶用水價格不變.為響應國家政策,制定合理的階梯用水價格,某城市采用簡單隨機抽樣的方法分別從郊區(qū)和城區(qū)抽取5戶和20戶居民的年人均用水量進行調(diào)研,抽取的數(shù)據(jù)的莖葉圖如下(單位:噸):

(1)在郊區(qū)的這5戶居民中隨機抽取2戶,求其年人均用水量都不超過30噸的概率;

(2)設該城市郊區(qū)和城區(qū)的居民戶數(shù)比為,現(xiàn)將年人均用水量不超過30噸的用戶定義為第一階梯用戶,并保證這一梯次的居民用戶用水價格保持不變.試根據(jù)樣本估計總體的思想,分析此方案是否符合國家保基本政策.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的最大值;

(2),證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】02、4中取一個數(shù)字,從1、3、5中取兩個數(shù)字,組成無重復數(shù)字的三位數(shù),則所有不同的三位數(shù)的個數(shù)是______(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合M=,對它的非空子集A,可將A中每個元素K都乘以再求和(如A=,可求得和為),則對M的所有非空子集,這些和的總和是__________________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,直線的參數(shù)方程為 (t為參數(shù)),直線的參數(shù)方程為 (為參數(shù)).設的交點為,當變化時,的軌跡為曲線

(1)寫出的普通方程;

(2)以坐標原點為極點,軸正半軸為極軸建立極坐標系,設,的交點,求的極徑.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設拋物線的焦點為,過點的直線與拋物線相交于兩點,與拋物線的準線相交于點 ,的面積之比__________

【答案】

【解析】

由題意可得拋物線的焦點的坐標為,準線方程為。

如圖,設A,B分別向拋物線的準線作垂線,垂足分別為E,N

,解得。

代入拋物線,解得。

∴直線AB經(jīng)過點與點,

故直線AB的方程為,代入拋物線方程解得。

, ,

。答案:

點睛:

在解決與拋物線有關的問題時,要注意拋物線的定義在解題中的應用。拋物線定義有兩種用途:一是當已知曲線是拋物線時,拋物線上的點M滿足定義它到準線的距離為d,|MF|d可解決有關距離、最值、弦長等問題;二是利用動點滿足的幾何條件符合拋物線的定義,從而得到動點的軌跡是拋物線.

型】填空
結(jié)束】
17

【題目】已知三個內(nèi)角所對的邊分別是,若.

1)求角;

2)若的外接圓半徑為2,求周長的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線1(a0,b0)的右焦點為F(c,0)

(1)若雙曲線的一條漸近線方程為yxc2,求雙曲線的方程;

(2)以原點O為圓心,c為半徑作圓,該圓與雙曲線在第一象限的交點為A,過A作圓的切線,斜率為-,求雙曲線的離心率.

查看答案和解析>>

同步練習冊答案