【題目】2015年我國將加快階梯水價(jià)推行,原則是;、建機(jī)制、促節(jié)約,其中;是指保證至少80%的居民用戶用水價(jià)格不變.為響應(yīng)國家政策,制定合理的階梯用水價(jià)格,某城市采用簡單隨機(jī)抽樣的方法分別從郊區(qū)和城區(qū)抽取5戶和20戶居民的年人均用水量進(jìn)行調(diào)研,抽取的數(shù)據(jù)的莖葉圖如下(單位:噸):

(1)在郊區(qū)的這5戶居民中隨機(jī)抽取2戶,求其年人均用水量都不超過30噸的概率;

(2)設(shè)該城市郊區(qū)和城區(qū)的居民戶數(shù)比為,現(xiàn)將年人均用水量不超過30噸的用戶定義為第一階梯用戶,并保證這一梯次的居民用戶用水價(jià)格保持不變.試根據(jù)樣本估計(jì)總體的思想,分析此方案是否符合國家保基本政策.

【答案】(1)(2)符合

【解析】

:(1)先列舉出從5戶郊區(qū)居民用戶中隨機(jī)抽取2戶,其年人均用水量構(gòu)成的所有基本事件,再列舉其中年人均用水量都不超過30噸的基本事件,最后計(jì)算即可。

(2)設(shè)該城市郊區(qū)的居民用戶數(shù)為,則其城區(qū)的居民用戶數(shù)為5a.依題意計(jì)算該城市年人均用水量不超過30噸的居民用戶的百分率。

解:(1)從5戶郊區(qū)居民用戶中隨機(jī)抽取2戶,其年人均用水量構(gòu)成的所有基本事件是:

(19,25),(19,28),(19,32),(19,34),(25,28),(25,32),(25,34),(28,32),(28,34),

(32,34)共10個.

其中年人均用水量都不超過30噸的基本事件是:(19,25),(19,28),(25,28)共3個。

設(shè)5戶郊區(qū)居民用戶中隨機(jī)抽取2戶,其年人均用水量都不超過30的事件為,則所求的概率為.  

(2)設(shè)該城市郊區(qū)的居民用戶數(shù)為,則其城區(qū)的居民用戶數(shù)為5a.依題意,該城市年人均用水量不超過30噸的居民用戶的百分率為:

.故此方案符合國家保基本政策.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國是世界上嚴(yán)重缺水的國家,某市政府為了鼓勵居民節(jié)約用水,計(jì)劃調(diào)整居民生活用水收費(fèi)方案,擬確定一個合理的月用水量標(biāo)準(zhǔn)x(噸),一位居民的月用水量不超過x的部分按平價(jià)收費(fèi),超過x的部分按議價(jià)收費(fèi).為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),…,[4,4.5)分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中a的值;
(Ⅱ)若將頻率視為概率,從該城市居民中隨機(jī)抽取3人,記這3人中月均用水量不低于3噸的人數(shù)為X,求X的分布列與數(shù)學(xué)期望.
(Ⅲ)若該市政府希望使85%的居民每月的用水量不超過標(biāo)準(zhǔn)x(噸),估計(jì)x的值(精確到0.01),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C:x2+y2-4x-14y+45=0及點(diǎn)Q(-2,3).

(1)若點(diǎn)P(m,m+1)在圓C上,求直線PQ的斜率.

(2)M是圓C上任一點(diǎn),求|MQ|的取值范圍.

(3)若點(diǎn)N(a,b)在圓C上,求的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖的程序框圖,如果輸入的a=6,b=4,那么輸出的s的值為(
A.17
B.22
C.18
D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)藝術(shù)專業(yè)400名學(xué)生參加某次測評,根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機(jī)抽取了100名學(xué)生,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成7組:[20,30),[30,40),┄,[80,90],并整理得到如下頻率分布直方圖:

(Ⅰ)從總體的400名學(xué)生中隨機(jī)抽取一人,估計(jì)其分?jǐn)?shù)小于70的概率;

(Ⅱ)已知樣本中分?jǐn)?shù)小于40的學(xué)生有5人,試估計(jì)總體中分?jǐn)?shù)在區(qū)間[40,50)內(nèi)的人數(shù);

(Ⅲ)已知樣本中有一半男生的分?jǐn)?shù)不小于70,且樣本中分?jǐn)?shù)不小于70的男女生人數(shù)相等.試估計(jì)總體中男生和女生人數(shù)的比例.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐A﹣BCFE中,四邊形EFCB為梯形,EF∥BC,且EF= BC,△ABC是邊長為2的正三角形,頂點(diǎn)F在AC上的射影為點(diǎn)G,且FG= ,CF= ,BF=
(1)證明:平面FGB⊥平面ABC;
(2)求二面角E﹣AB﹣F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn) ,點(diǎn)P是圓 上的任意一點(diǎn),設(shè)Q為該圓的圓心,并且線段PA的垂直平分線與直線PQ交于點(diǎn)E.
(1)求點(diǎn)E的軌跡方程;
(2)已知M,N兩點(diǎn)的坐標(biāo)分別為(﹣2,0),(2,0),點(diǎn)T是直線x=4上的一個動點(diǎn),且直線TM,TN分別交(1)中點(diǎn)E的軌跡于C,D兩點(diǎn)(M,N,C,D四點(diǎn)互不相同),證明:直線CD恒過一定點(diǎn),并求出該定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),求

(1)過點(diǎn)A,B且周長最小的圓的方程;

(2)過點(diǎn)A,B且圓心在直線上的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱柱中, 平面 , , , , 的中點(diǎn).

(Ⅰ)求四棱錐的體積;

(Ⅱ)設(shè)點(diǎn)在線段上,且直線與平面所成角的正弦值為,求線段的長度;

判斷線段上是否存在一點(diǎn),使得?(結(jié)論不要求證明)

查看答案和解析>>

同步練習(xí)冊答案