【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn), 軸正半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系,已知曲線,直線.
(1)將曲線上所有點(diǎn)的橫坐標(biāo)、縱坐標(biāo)分別伸長(zhǎng)為原來的2倍、倍后得到曲線,請(qǐng)寫出直線,和曲線的直角坐標(biāo)方程;
(2)若直線經(jīng)過點(diǎn)且與曲線交于點(diǎn),求的值.
【答案】(1),;(2)2
【解析】分析:(1)根據(jù)極坐標(biāo)和直角坐標(biāo)系間的轉(zhuǎn)化公式及變換公式可得所求的方程.(2)由題意可求得直線的參數(shù)方程,將其代入曲線的方程消元后得到關(guān)于參數(shù)的二次方程,然后根據(jù)參數(shù)的幾何意義可得所求.
詳解:(1)將代入,可得,
∴直線的直角坐標(biāo)方程為.
設(shè)曲線上任一點(diǎn)坐標(biāo)為,則,所以,
代入得,
所以的方程為.
(2)直線:的傾斜角為,
由題意可知直線的參數(shù)方程為(為參數(shù)),
把(為參數(shù))代入曲線的方程整理得.
設(shè)點(diǎn)對(duì)應(yīng)的參數(shù)分別為,
則,
由直線參數(shù)的幾何意義可知.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為;直線的參數(shù)方程為(為參數(shù)),直線與曲線分別交于,兩點(diǎn).
(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;
(2)若點(diǎn)的極坐標(biāo)為,,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)討論函數(shù)的定義域;
(2)當(dāng)時(shí),解關(guān)于x的不等式:
(3)當(dāng)時(shí),不等式對(duì)任意實(shí)數(shù)恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|),x為f(x)的零點(diǎn),x為y=f(x)圖象的對(duì)稱軸,且f(x)在()上單調(diào),則ω的最大值為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】偶函數(shù)定義域?yàn)?/span>,其導(dǎo)函數(shù)是,當(dāng)時(shí),有,則關(guān)于的不等式的解集為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,,,為的中點(diǎn).
(1)證明:平面;
(2)若點(diǎn)在棱上,且,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)在研究函數(shù)f(x)=(x∈R)時(shí),分別給出下面幾個(gè)結(jié)論:
①等式f(-x)=-f(x)在x∈R時(shí)恒成立;
②函數(shù)f(x)的值域?yàn)椋?/span>-1,1);
③若x1≠x2,則一定有f(x1)≠f(x2);
④方程f(x)=x在R上有三個(gè)根.
其中正確結(jié)論的序號(hào)有______.(請(qǐng)將你認(rèn)為正確的結(jié)論的序號(hào)都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義域?yàn)?/span>上的奇函數(shù),且.
(1)用定義證明:函數(shù)在上是增函數(shù);
(2)若實(shí)數(shù)t滿足求實(shí)數(shù)t的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定點(diǎn),定直線: ,動(dòng)圓過點(diǎn),且與直線相切.
(Ⅰ)求動(dòng)圓的圓心軌跡的方程;
(Ⅱ)過點(diǎn)的直線與曲線相交于, 兩點(diǎn),分別過點(diǎn), 作曲線的切線, ,兩條切線相交于點(diǎn),求外接圓面積的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com