某報社做了一次關(guān)于“什么是新時代的雷鋒精神”的調(diào)查,在A,B,C,D四個單位回收的問卷數(shù)依次成等差數(shù)列,且共回收1 000份,因報道需要,再從回收的問卷中按單位分層抽取容量為150的樣本,若在B單位抽取30份,則在D單位抽取的問卷份( 。
A、60B、200
C、400D、140
考點:等差數(shù)列的性質(zhì)
專題:計算題,等差數(shù)列與等比數(shù)列
分析:因為A,B,C,D四個單位回收的問卷數(shù)依次成等差數(shù)列,故四個單位抽取容量也成等差數(shù)列,在此數(shù)列中,已知第二項和前四項的和,故可設(shè)出公差解決.
解答: 解:因為A,B,C,D四個單位回收的問卷數(shù)依次成等差數(shù)列,故四個單位抽取容量也成等差數(shù)列,
設(shè)公差為d,則A,B,C,D四個單位抽取容量分別為:30-d,30,30+d,30+2d,
所以30-d+30+30+d+30+2d=150,d=15,所以在D單位抽取的問卷是60
故選:A.
點評:本題考查分層抽樣、等差數(shù)列等知識,將數(shù)列和統(tǒng)計內(nèi)容進行了很好的綜合,但難度不大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

滿足條件|z|=1及|z+
1
2
|=|z-
3
2
|的復(fù)數(shù)Z是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列各組函數(shù)中,表示同一函數(shù)的是( 。
A、y=1,y=
x
x
B、y=x0,y=1
C、y=x,y=
3x3
D、y=|x|,y=(
x
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
-x2-4x(x≥0)
x2-4x(x<0)
,又α,β為銳角三角形的兩內(nèi)角,則( 。
A、f(sinα)>f(cosβ)
B、f(sinα)<f(cosβ)
C、f(sinα)>f(sinβ)
D、f(cosα)>f(cosβ)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|x2-2x≤0,x∈R},B={y|y=-x2,-1≤x≤2},則∁R(A∩B)等于( 。
A、RB、{x|x∈R,x≠0}
C、{0}D、φ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}為等比數(shù)列,且a2=2,a5=16,則公比q( 。
A、1B、2C、4D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
2x-2-x
2
是( 。
A、偶函數(shù),在(0,+∞)是增函數(shù)
B、奇函數(shù),在(0,+∞)是增函數(shù)
C、偶函數(shù),在(0,+∞)是減函數(shù)
D、奇函數(shù),在(0,+∞)是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

運行如圖所示的程序框圖,若n=2,a1=1,a2=2,則輸出的s等于(  )
A、1
B、
3
2
C、2
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)g(x)=log3(ax2+2x-1)有最大值1,則實數(shù)a的值等于( 。
A、-
1
2
B、
1
4
C、-
1
4
D、4

查看答案和解析>>

同步練習(xí)冊答案