【題目】共享單車是指企業(yè)的校園,地鐵站點(diǎn)、公交站點(diǎn)、居民區(qū)、商業(yè)區(qū)、公共服務(wù)區(qū)等提供自行車單車共享服務(wù),是一種分時(shí)租賃模式,某共享單車企業(yè)為更好服務(wù)社會(huì),隨機(jī)調(diào)查了100人,統(tǒng)計(jì)了這100人每日平均騎行共享單車的時(shí)間(單位:分鐘),由統(tǒng)計(jì)數(shù)據(jù)得到如下頻率分布直方圖,已知騎行時(shí)間在三組對(duì)應(yīng)的人數(shù)依次成等差數(shù)列
(1)求頻率分布直方圖中的值.
(2)若將日平均騎行時(shí)間不少于80分鐘的用戶定義為“忠實(shí)用戶”,將日平均騎行時(shí)間少于40分鐘的用戶為“潛力用戶”,現(xiàn)從上述“忠實(shí)用戶”與“潛力用戶”的人中按分層抽樣選出5人,再?gòu)倪@5人中任取3人,求恰好1人為“忠實(shí)用戶”的概率.
【答案】(1) , ;(2) .
【解析】試題分析:(1)根據(jù)直方圖各矩形面積和為可得,從而可得的值,在根據(jù)三組對(duì)應(yīng)的人數(shù)依次成等差數(shù)列求出的值;(2)列舉出這人中任選人共種情形,符合題設(shè)條件有共有種,根據(jù)古典概型概率公式可得恰好人為“忠實(shí)用戶”的概率.
試題解析:(1)由,
又,所以.
(2)“忠實(shí)用戶”“潛力用戶”的人數(shù)之比為: ,
所以“忠實(shí)用戶”抽取人,“潛力用戶”抽取人,
記事件:從人中任取人恰有人為“忠實(shí)用戶”
設(shè)兩名“忠實(shí)用戶”的人記為: ,三名“潛力用戶”的人記為: ,
則這5人中任選3人有: ,共10種情形,
符合題設(shè)條件有: 共有6種,因此概率為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(導(dǎo)學(xué)號(hào):05856290)[選修4-5:不等式選講]
已知函數(shù)f(x)=|x-a|+|x-2a|.
(Ⅰ)對(duì)任意x∈R,不等式f(x)>1成立,求實(shí)數(shù)a的取值范圍;
(Ⅱ)當(dāng)a=-1時(shí),解不等式f(x)<3.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(導(dǎo)學(xué)號(hào):05856301)已知函數(shù)f(x)=m(x-1)ex+x2(m∈R),其導(dǎo)函數(shù)為f′(x),若對(duì)任意的x<0,不等式x2+(m+1)x>f′(x)恒成立,則實(shí)數(shù)m的取值范圍為( )
A. (0,1) B. (-∞,1) C. (-∞,1] D. (1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(導(dǎo)學(xué)號(hào):05856333)
已知橢圓C: (a>b>0)的離心率為,其右焦點(diǎn)為F(c,0),第一象限的點(diǎn)A在橢圓C上,且AF⊥x軸.
(Ⅰ)若橢圓C過(guò)點(diǎn)(1,- ),求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)已知直線l:y=x-c與橢圓C交于M,N兩點(diǎn),且B(4c,yB)為直線l上的點(diǎn),證明:直線AM,AB,AN的斜率滿足kAB=.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)求曲線在點(diǎn)處的切線方程;
(2)令,討論的單調(diào)性并判斷有無(wú)極值,若有,求出極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知p:“x0∈(-1,1),x-x0-m=0(m∈R)”是正確的,設(shè)實(shí)數(shù)m的取值集合為M.
(1)求集合M;
(2)設(shè)關(guān)于x的不等式(x-a)(x+a-2)<0(a∈R)的解集為N,若“x∈M”是“x∈N”的充分條件,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正方體ABCD-A′B′C′D′的外接球的體積為π,將正方體割去部分后,剩余幾何體的三視圖如圖所示,則剩余幾何體的表面積為( )
A. + B. 3+或+ C. 3+ D. +或2+
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某社區(qū)為了解轄區(qū)住戶中離退休老人每天的平均戶外“活動(dòng)時(shí)間”,從轄區(qū)住戶的離退休老人中隨機(jī)抽取了100位老人進(jìn)行調(diào)查,獲得了每人每天的平均戶外“活動(dòng)時(shí)間”(單位:小時(shí)),活動(dòng)時(shí)間按照、、…、從少到多分成9組,制成樣本的頻率分布直方圖如圖所示.
(1)求圖中的值;
(2)估計(jì)該社區(qū)住戶中離退休老人每天的平均戶外“活動(dòng)時(shí)間”的中位數(shù);
(3)在、這兩組中采用分層抽樣抽取7人,再?gòu)倪@7人中隨機(jī)抽取2人,求抽取的兩人恰好都在同一個(gè)組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,圓的參數(shù)方程為(為參數(shù), 是大于0的常數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為.
(1)求圓的極坐標(biāo)方程和圓的直角坐標(biāo)方程;
(2)分別記直線: , 與圓、圓的異于原點(diǎn)的焦點(diǎn)為, ,若圓與圓外切,試求實(shí)數(shù)的值及線段的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com