在邊長為的正方形ABCD中,E、F分別為BC、CD的中點,M、N分別為AB、CF的中點,現沿AE、AF、EF折疊,使B、C、D三點重合,重合后的點記為,構成一個三棱錐.
(1)請判斷與平面的位置關系,并給出證明;
(2)證明平面;
(3)求二面角的余弦值.
(1)平行;(2)證明和即可;(3)
【解析】
試題分析:本題考查空間想象能力,在折疊過程中,找到不變的量是求解的關鍵.(1)由中位線定理,可證明平行;(2)證明和即可;(3)注意到三角形MEF、BEF都是等腰三角形,因此,取EF的中點即可求出二面角.
試題解析:(1)平行平面
證明:由題意可知點在折疊前后都分別是的中點(折疊后兩點重合)
所以平行,
因為,所以平行平面.
(2)證明:由題意可知的關系在折疊前后都沒有改變.
因為在折疊前,由于折疊后,點,所以
因為,所以平面.
(3)解:
所以是二面角的平面角.
因為⊥,所以.
在中, ,由于,所以,
于是.
所以,二面角的余弦值為.
考點:1、線面平行;2、線面垂直的判定;3、二面角的概念及其求法.
科目:高中數學 來源:2013-2014學年福建四地六校高三上學期第三次月考文科數學試卷(解析版) 題型:解答題
在邊長為的正方形ABCD中,E、F分別為BC、CD的中點,M、N分別為AB、CF的中點,現沿AE、AF、EF折疊,使B、C、D三點重合于B,構成一個三棱錐(如圖所示).
(Ⅰ)在三棱錐上標注出、點,并判別MN與平面AEF的位置關系,并給出證明;
(Ⅱ)是線段上一點,且,問是否存在點使得,若存在,求出的值;若不存在,請說明理由;
(Ⅲ)求多面體E-AFNM的體積.
查看答案和解析>>
科目:高中數學 來源:2011-2012學年廣東省佛山市高三5月臨考集訓文科數學試卷(解析版) 題型:解答題
在邊長為的正方形ABCD中,E、F分別為BC、CD的中點,M、N分別為AB、CF的中點,現沿AE、AF、EF折疊,使B、C、D三點重合,構成一個三棱錐.
(1)判別MN與平面AEF的位置關系,并給出證明;
(2)證明AB⊥平面BEF;
(3)求多面體E-AFNM的體積.
查看答案和解析>>
科目:高中數學 來源:2011-2012學年福建省高三5月模擬考試文科數學試卷(解析版) 題型:解答題
(本小題滿分12分)
在邊長為的正方形ABCD中,E、F分別為BC、CD的中點,M、N分別為AB、CF的中點,現沿AE、AF、EF折疊,使B、C、D三點重合于B,構成一個三棱錐(如圖所示).
(Ⅰ)在三棱錐上標注出、點,并判別MN與平面AEF的位置關系,并給出證明;
(Ⅱ)是線段上一點,且, 問是否存在點使得,若存在,求出的值;若不存在,請說明理由;
(Ⅲ)求多面體E-AFNM的體積.
查看答案和解析>>
科目:高中數學 來源:2011-2012學年山東省菏澤市高三5月高考沖刺題文科數學試卷(解析版) 題型:解答題
在邊長為的正方形ABCD中,E、F分別為BC、CD的中點,M、N分別為AB、CF的中點,現沿AE、AF、EF折疊,使B、C、D三點重合,構成一個三棱錐.
(I)判別MN與平面AEF的位置關系,并給出證明;
(II)求多面體E-AFMN的體積.
【解析】第一問因翻折后B、C、D重合(如下圖),所以MN應是的一條中位線,則利用線線平行得到線面平行。
第二問因為平面BEF,……………8分
且,
∴,又 ∴
(1)因翻折后B、C、D重合(如圖),
所以MN應是的一條中位線,………………3分
則.………6分
(2)因為平面BEF,……………8分
且,
∴,………………………………………10分
又 ∴
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com