【題目】某單位為綠化環(huán)境,移栽了甲、乙兩種大樹各2株.設(shè)甲、乙兩種大樹移栽的成活率分別為和,且各株大樹是否成活互不影響.求移栽的4株大樹中:
(1)兩種大樹各成活1株的概率;
(2)成活的株數(shù)的分布列與期望.
【答案】(Ⅰ) 所求概率為
(Ⅱ) 綜上知有分布列
0 | 1 | 2 | 3 | 4 | |
P | 1/36 | 1/6 | 13/36 | 1/3 | 1/9 |
的期望為 (株)
【解析】設(shè)表示甲種大樹成活k株,k=0,1,2 …………………… 1 分
表示乙種大樹成活l株,l=0,1,2 ,先計算出,它都屬于n次獨立重復試驗發(fā)生n次的概率.
(I)相互獨立試驗同時發(fā)生的概率所以所求概率為.
(2)首先確定的所有可能值為0,1,2,3,4,然后分別計算出取每個值對應的概率,再列出分布列,根據(jù)分布列計算出期望值.
設(shè)表示甲種大樹成活k株,k=0,1,2 ……………… 1 分
表示乙種大樹成活l株,l=0,1,2 …………………… 2分
則, 獨立. 由獨立重復試驗中事件發(fā)生的概率公式有
, .
據(jù)此算得, , .…………………… 3 分
, , .
(Ⅰ) 所求概率為.…………………… 6分
(Ⅱ) 解法一: 的所有可能值為0,1,2,3,4,且
,…………………… 7 分
,…………………8 分
=……9 分
.……… 10 分
.……… 11 分
綜上知有分布列
0 | 1 | 2 | 3 | 4 | |
P | 1/36 | 1/6 | 13/36 | 1/3 | 1/9 |
從而, 的期望為 (株)…… 13 分
解法二:分布列的求法同上
令分別表示甲乙兩種樹成活的株數(shù),則10分
故有從而知
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)準備投入適當?shù)膹V告費對產(chǎn)品進行促銷,在一年內(nèi)預計銷售Q(萬件)與廣告費x(萬元)之間的函數(shù)關(guān)系為Q= (x≥0).已知生產(chǎn)此產(chǎn)品的年固定投入為3萬元,每生產(chǎn)1萬元此產(chǎn)品仍需再投入32萬元,若每件銷售價為“平均每件生產(chǎn)成本的150%”與“年平均每件所占廣告費的50%”之和.
(1)試將年利潤W(萬元)表示為年廣告費x(萬元)的函數(shù);
(2)當年廣告費投入多少萬元時,企業(yè)年利潤最大?最大利潤為多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知a<0,關(guān)于x的一元二次不等式ax2﹣(2+a)x+2>0的解集為( )
A.{x|x< 或x>1}
B.{x| <x<1}
C.{x|x<1或x> }
D.{x|1<x< }
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題中真命題的個數(shù)為( )
①命題“若lgx=0,則x=l”的逆否命題為“若lgx≠0,則x≠1”
②若“p∧q”為假命題,則p,q均為假命題
③命題p:x∈R,使得sinx>l;則¬p:x∈R,均有sinx≤1
④“x>2”是“ < ”的充分不必要條件.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù)()
(Ⅰ)當時,求在處的切線方程;
(Ⅱ)求單調(diào)區(qū)間;
(Ⅲ)若圖象與軸關(guān)于, 兩點,求證: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】心理學家分析發(fā)現(xiàn)視覺和空間能力與性別有關(guān),某數(shù)學興趣小組為了驗證這個結(jié)論,從興趣小組中按分層抽樣的方法抽取50名同學(男30女20),給所有同學幾何題和代數(shù)題各一題,讓各位同學自由選擇一道題進行解答.選題情況如表:(單位:人)
幾何題 | 代數(shù)題 | 總計 | |
男同學 | 22 | 8 | 30 |
女同學 | 8 | 12 | 20 |
總計 | 30 | 20 | 50 |
(1)能否據(jù)此判斷有97.5%的把握認為視覺和空間能力與性別有關(guān)?
(2)經(jīng)過多次測試后,甲每次解答一道幾何題所用的時間在5﹣7分鐘,乙每次解答一道幾何題所用的時間在6﹣8分鐘,現(xiàn)甲、乙各解同一道幾何題,求乙比甲先解答完的概率.
(3)現(xiàn)從選擇做幾何題的8名女生中任意抽取兩人對她們的答題情況進行全程研究,記甲、乙兩女生被抽到的人數(shù)為X,求X的分布列及數(shù)學期望E(X).
附表及公式:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
K2= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓 的離心率為 ,其左頂點A在圓O:x2+y2=16上.
(1)求橢圓W的方程;
(2)若點P為橢圓W上不同于點A的點,直線AP與圓O的另一個交點為Q.是否存在點P,使得 ?若存在,求出點P的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】正數(shù)數(shù)列{an}的前n項和為Sn , 已知對于任意的n∈Z+ , 均有Sn與1正的等比中項等于an與1的等差中項.
(1)試求數(shù)列{an}的通項公式;
(2)設(shè)bn= ,數(shù)列{bn}的前n項和為Tn , 求證:Tn< .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com