【題目】已知函數(shù)(為自然對數(shù)的底數(shù)).
(1)若, ,求函數(shù)的單調(diào)區(qū)間;
(2)若,且方程在內(nèi)有解,求實數(shù)的取值范圍.
【答案】(1)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.(2)
【解析】【試題分析】(1)先求出函數(shù)解析式導(dǎo)數(shù),再借助導(dǎo)數(shù)與函數(shù)的單調(diào)性的關(guān)系求解;(2)依據(jù)題設(shè)先將問題進行等價轉(zhuǎn)化,再構(gòu)造函數(shù)運用導(dǎo)數(shù)與函數(shù)的單調(diào)性的關(guān)系研究函數(shù)的圖像的形狀分析求解:
(1)若, ,則,
由,得或,
①若,即時, ,此時函數(shù)單調(diào)遞減,單調(diào)遞減區(qū)間為;
②若,即時,由,得;由得,或,
所以單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.
(2)若,∴, 則,
若方程在內(nèi)有解,即在內(nèi)有解,
即在有解.
設(shè),則在內(nèi)有零點,設(shè)是在內(nèi)的一個零點,
因為, ,所以在和上不可能單調(diào),
由,設(shè),則在和上存在零點,
即在上至少有兩個零點,因為,
當時, , 在上遞增,不合題意;
當時, , 在上遞減,不合題意;
當時,令,得,則在上遞減,在上遞增,
在上存在最小值.
若有兩個零點,則有, .
所以, ,
設(shè),則,令,得,
當時, ,此時函數(shù)遞增;
當時, ,此時函數(shù)遞減,
則,所以恒成立.
由, ,所以,
當時,設(shè)的兩個零點為,
則在上遞增,在上遞減,在上遞增,
則, ,則在內(nèi)有零點,
綜上,實數(shù)的取值范圍是.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某保險公司利用簡單隨機抽樣方法,對投保車輛進行抽樣,樣本車輛中每輛車的賠付結(jié)果統(tǒng)計如下:
賠付金額(元) | 0 | 1 000 | 2 000 | 3 000 | 4 000 |
車輛數(shù)(輛) | 500 | 130 | 100 | 150 | 120 |
(1)若每輛車的投保金額均為2800元,估計賠付金額大于投保金額的概率.
(2)在樣本車輛中,車主是新司機的占10%,在賠付金額為4000元的樣本車輛中,車主是新司機的占20%,估計在已投保車輛中,新司機獲賠金額為4000元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個學(xué)生在一次競賽中要回答道題是這樣產(chǎn)生的:從道物理題中隨機抽取道;從道化學(xué)題中隨機抽取道;從道生物題中隨機抽取道.使用合適的方法確定這個學(xué)生所要回答的三門學(xué)科的題的序號(物理題的編號為,化學(xué)題的編號為,生物題的編號為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)橢圓: ,長軸的右端點與拋物線: 的焦點重合,且橢圓的離心率是.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)過作直線交拋物線于, 兩點,過且與直線垂直的直線交橢圓于另一點,求面積的最小值,以及取到最小值時直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若函數(shù)在定義域內(nèi)單調(diào)遞增,求實數(shù) 的取值范圍,
(2)當時,關(guān)于的方程在[1,4]上恰有兩個不相等的實數(shù)根,
求實數(shù)的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在正方體ABCD-A1B1C1D1中,E為AB的中點,F為AA1的中點.求證:CE,D1F,DA三線交于一點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若是的單調(diào)遞增函數(shù),求實數(shù)的取值范圍;
(2)當時,求證:函數(shù)有最小值,并求函數(shù)最小值的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com