分析 (I)由a1=1,且對任意n∈N*,S1,$\frac{1}{2}\\;{a}_{\\;\\;n+1}$an+1,Sn成等差數列.可得:an+1=1+Sn,再利用遞推式、等比數列的通項公式即可得出;
(II)bn=$\frac{n}{{2}^{n+1}}$.利用“錯位相減法”、等比數列的前n項和公式即可得出.
解答 解:(I)∵a1=1,且對任意n∈N*,S1,$\frac{1}{2}\\;{a}_{\\;\\;n+1}$an+1,Sn成等差數列.
∴$2×\frac{1}{2}{a}_{n+1}$=S1+Sn,
∴an+1=1+Sn,
當n≥2時,an=1+Sn-1,
∴an+1-an=an,即an+1=2an,
∴數列{an}是等比數列,首項為1,公比為2.
∴an=2n-1.
(II)bn=$\frac{n}{4{a}_{n}}$=$\frac{n}{{2}^{n+1}}$.
∴數列{bn}的前n項和Tn=$\frac{1}{{2}^{2}}+\frac{2}{{2}^{3}}+\frac{3}{{2}^{4}}$+…+$\frac{n}{{2}^{n+1}}$,
$\frac{1}{2}{T}_{n}$=$\frac{1}{{2}^{3}}$+$\frac{2}{{2}^{4}}$$+\frac{3}{{2}^{5}}$+…+$\frac{n-1}{{2}^{n+1}}$+$\frac{n}{{2}^{n+2}}$,
∴$\frac{1}{2}{T}_{n}$=$\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}$+…+$\frac{1}{{2}^{n+1}}$-$\frac{n}{{2}^{n+2}}$,
∴Tn=$\frac{1}{2}+\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n}}$-$\frac{n}{{2}^{n+1}}$=$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$-$\frac{n}{{2}^{n+1}}$=$1-\frac{2+n}{{2}^{n+1}}$.
點評 本題考查了遞推式、“錯位相減法”、等差數列與等比數列的通項公式及其前n項和公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com