已知增函數(shù)是定義在(-1,1)上的奇函數(shù),其中,a為正整數(shù),且滿足.
⑴求函數(shù)的解析式;
⑵求滿足的范圍;

(1);(2)

解析試題分析:(1)由函數(shù)是定義在上的奇函數(shù),則有,可求得,此時(shí),又有,則有,即,又為正整數(shù),所以,從而可求出函數(shù)的解析式;(2)由(1)可知,可知函數(shù)在定義域內(nèi)為單調(diào)遞增(可用定義法證明:①在其定義域內(nèi)任取兩個(gè)自變量,且;②作差(或作商)比較的大小;③得出結(jié)論,即若則為單調(diào)遞增函數(shù),若則為單調(diào)遞減函數(shù)),又不等式為奇函數(shù),所以不等式可化為,從而有,可求出的范圍.
試題解析:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/56/9/ludm2.png" style="vertical-align:middle;" />是定義在上的奇函數(shù)
所以,解得     2分
,由,得,又為正整數(shù)
所以,故所求函數(shù)的解析式為     5分
(2)由(1)可知上為單調(diào)遞增函數(shù)
由不等式,又函數(shù)是定義在上的奇函數(shù)
所以有,     8分
從而有     10分
解得     12分
考點(diǎn):1.函數(shù)解析式、奇偶性、單調(diào)性;2.不等式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知是定義在上的奇函數(shù),當(dāng)時(shí),.
(1)求;
(2)求的解析式;
(3)若,求區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

定義:對(duì)于函數(shù),若在定義域內(nèi)存在實(shí)數(shù),滿足,則稱為“局部奇函數(shù)”.
(1)已知二次函數(shù),試判斷是否為定義域上的“局部奇函數(shù)”?若是,求出滿足的值;若不是,請(qǐng)說(shuō)明理由;
(2)若是定義在區(qū)間上的“局部奇函數(shù)”,求實(shí)數(shù)的取值范圍;
(3)若為定義域上的“局部奇函數(shù)”,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)  ().
(1)若為偶函數(shù),求實(shí)數(shù)的值;
(2)已知,若對(duì)任意都有恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)二次函數(shù),對(duì)任意實(shí)數(shù),有恒成立;數(shù)列滿足.
(1)求函數(shù)的解析式和值域;
(2)證明:當(dāng)時(shí),數(shù)列在該區(qū)間上是遞增數(shù)列;
(3)已知,是否存在非零整數(shù),使得對(duì)任意,都有
 恒成立,若存在,求之;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù),為常數(shù)
(1)求的最小值的解析式;
(2)在(1)中,是否存在最小的整數(shù),使得對(duì)于任意均成立,若存在,求出 的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)
(1)當(dāng)時(shí),求函數(shù)的定義域;
(2)若函數(shù)的定義域?yàn)镽,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù).
(I)若函數(shù)為奇函數(shù),求實(shí)數(shù)的值;
(II)若對(duì)任意的,都有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)。
(Ⅰ)若且對(duì)任意實(shí)數(shù)均有成立,求的表達(dá)式;
(Ⅱ)在(Ⅰ)的條件下,當(dāng)時(shí),是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案