已知函數(shù).
(I)若函數(shù)為奇函數(shù),求實(shí)數(shù)的值;
(II)若對(duì)任意的,都有成立,求實(shí)數(shù)的取值范圍.
(I)(II)
解析試題分析:(Ⅰ)根據(jù)是奇函數(shù),得到恒等式,對(duì)一切恒成立,即得.
(Ⅱ)由均有,即成立,
轉(zhuǎn)化成對(duì)恒成立,即所以.只需求在的最小值.
試題解析:(Ⅰ)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/08/9/17s4w3.png" style="vertical-align:middle;" />是奇函數(shù),所以,
即所以,對(duì)一切恒成立,
所以 4分
(Ⅱ)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/37/a/xa2hq.png" style="vertical-align:middle;" />均有,即成立,
所以對(duì)恒成立, 8分
所以.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/e3/c/b0ncb.png" style="vertical-align:middle;" />在上單調(diào)遞增,所以
所以 12分
考點(diǎn):函數(shù)的奇偶性,函數(shù)的單調(diào)性、最值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知增函數(shù)是定義在(-1,1)上的奇函數(shù),其中,a為正整數(shù),且滿足.
⑴求函數(shù)的解析式;
⑵求滿足的的范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)定義域?yàn)閇0,1]的函數(shù)同時(shí)滿足以下三個(gè)條件時(shí)稱為“友誼函數(shù)”:
(1)對(duì)任意的,總有≥0;
(2);
(3)若成立,則下列判斷正確的有 .
(1)為“友誼函數(shù)”,則;
(2)函數(shù)在區(qū)間[0,1]上是“友誼函數(shù)”;
(3)若為“友誼函數(shù)”,且0≤<≤1,則≤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)用定義證明在上單調(diào)遞增;
(2)若是上的奇函數(shù),求的值;
(3)若的值域?yàn)镈,且,求的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
對(duì)定義在區(qū)間上的函數(shù),若存在閉區(qū)間和常數(shù),使得對(duì)任意的,都有,且對(duì)任意的都有恒成立,則稱函數(shù)為區(qū)間上的“型”函數(shù).
(1)求證:函數(shù)是上的“型”函數(shù);
(2)設(shè)是(1)中的“型”函數(shù),若不等式對(duì)一切的恒成立,求實(shí)數(shù)的取值范圍;
(3)若函數(shù)是區(qū)間上的“型”函數(shù),求實(shí)數(shù)和的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/d8/4/1qofq2.png" style="vertical-align:middle;" />(a為實(shí)數(shù)),
(1)當(dāng)時(shí),求函數(shù)的值域。
(2)若函數(shù)在定義域上是減函數(shù),求a的取值范圍
(3)求函數(shù)在上的最大值及最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
若函數(shù)為定義域上的單調(diào)函數(shù),且存在區(qū)間(其中,使得當(dāng)時(shí), 的取值范圍恰為,則稱函數(shù)是上的正函數(shù),區(qū)間叫做函數(shù)的等域區(qū)間.
(1)已知是上的正函數(shù),求的等域區(qū)間;
(2)試探求是否存在,使得函數(shù)是上的正函數(shù)?若存在,請(qǐng)求出實(shí)數(shù)的取值范圍;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),
(1)當(dāng)時(shí),解不等式
(2)若函數(shù)有最大值,求實(shí)數(shù)的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com