【題目】在甲、乙兩個(gè)班級(jí)進(jìn)行數(shù)學(xué)考試,按照大于等于120分為優(yōu)秀,120分以下為非優(yōu)秀統(tǒng)計(jì)成績(jī)后,得到如下的2×2列聯(lián)表.已知在全部105人中抽到隨機(jī)抽取1人為優(yōu)秀的概率為.
優(yōu)秀 | 非優(yōu)秀 | 總計(jì) | |
甲班 | 10 | ||
乙班 | 30 | ||
合計(jì) |
(1)請(qǐng)完成上面的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按95%的可能性要求,能否認(rèn)為“成績(jī)與班級(jí)有關(guān)系”?
P(K2≥x0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
x0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.076 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式及數(shù)據(jù):K2=.
【答案】(1)
優(yōu)秀 | 非優(yōu)秀 | 總計(jì) | |
甲班 | 10 | 45 | 55 |
乙班 | 20 | 30 | 50 |
合計(jì) | 30 | 75 | 105 |
; (2)按95%的可能性要求,可以認(rèn)為“成績(jī)與班級(jí)有關(guān)系”.
【解析】
(1)根據(jù)隨機(jī)抽取1人為優(yōu)秀的概率為,得出優(yōu)秀的總?cè)藬?shù),從而得出乙班優(yōu)秀人數(shù),同時(shí)也能得出甲班非優(yōu)秀的人數(shù),其余數(shù)據(jù)進(jìn)而可求;
(2)根據(jù)公式K2=,求出相關(guān)指數(shù)的值,然后進(jìn)行對(duì)比臨界值,即可得出結(jié)果.
解:(1)優(yōu)秀人數(shù)為105×=30,
∴乙班優(yōu)秀人數(shù)為30-10=20(人),
甲班非優(yōu)秀人數(shù)為105-30-30=45(人),
故列聯(lián)表如下:
優(yōu)秀 | 非優(yōu)秀 | 總計(jì) | |
甲班 | 10 | 45 | 55 |
乙班 | 20 | 30 | 50 |
合計(jì) | 30 | 75 | 105 |
(2)根據(jù)列聯(lián)表中的數(shù)據(jù),
所以若按95%的可能性要求,可以認(rèn)為“成績(jī)與班級(jí)有關(guān)系”.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某次考試結(jié)束,甲、乙、丙三位同學(xué)聚在一起聊天.甲說(shuō):“你們的成績(jī)都沒(méi)有我高”乙說(shuō):“我的成績(jī)一定比丙高 ”丙說(shuō):“你們的成績(jī)都比我高 ”成績(jī)公布后,三人成績(jī)互不相同且三人中恰有一人說(shuō)得不對(duì),若將三人成績(jī)從高到低排序,則甲排在第______名
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,圓錐PO中,AB是圓O的直徑,且AB=4,C是底面圓O上一點(diǎn),且AC=2,點(diǎn)D為半徑OB的中點(diǎn),連接PD.
(1)求證:PC在平面APB內(nèi)的射影是PD;
(2)若PA=4,求底面圓心O到平面PBC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知從1開(kāi)始的連續(xù)奇數(shù)蛇形排列形成寶塔形數(shù)表,第一行為1,第二行為3,5,第三行為7,9,11,第四行為13,15,17,19,…,如圖所示,在寶塔形數(shù)表中位于第行、第列的數(shù)記為,比如,,.若,則______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在下列各題中,用符號(hào)“”把,連起來(lái).
(1)實(shí)數(shù)滿足,或;
(2),且;
(3),;
(4)是偶數(shù),是偶數(shù)(其中,都是整數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的多面體中,平面平面,四邊形為邊長(zhǎng)為2的菱形, 為直角梯形,四邊形為平行四邊形,且, , .
(1)若, 分別為, 的中點(diǎn),求證: 平面;
(2)若, 與平面所成角的正弦值為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,且兩個(gè)坐標(biāo)系取相等的長(zhǎng)度單位.已知直線的參數(shù)方程為 (為參數(shù)),曲線的參數(shù)方程為 (為參數(shù)),曲線的極坐標(biāo)方程為.
(1)求曲線和的公共點(diǎn)的極坐標(biāo);
(2)若為曲線上的一個(gè)動(dòng)點(diǎn),求到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知冪函數(shù)滿足.
(1)求函數(shù)的解析式;
(2)若函數(shù),是否存在實(shí)數(shù)使得的最小值為0?若存在,求出的值;若不存在,說(shuō)明理由;
(3)若函數(shù),是否存在實(shí)數(shù),使函數(shù)在上的值域?yàn)?/span>?若存在,求出實(shí)數(shù)的取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com