【題目】在甲、乙兩個(gè)班級(jí)進(jìn)行數(shù)學(xué)考試,按照大于等于120分為優(yōu)秀,120分以下為非優(yōu)秀統(tǒng)計(jì)成績(jī)后,得到如下的2×2列聯(lián)表.已知在全部105人中抽到隨機(jī)抽取1人為優(yōu)秀的概率為

優(yōu)秀

非優(yōu)秀

總計(jì)

甲班

10

乙班

30

合計(jì)

(1)請(qǐng)完成上面的列聯(lián)表;

(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按95%的可能性要求,能否認(rèn)為“成績(jī)與班級(jí)有關(guān)系”?

P(K2≥x0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

x0

0.455

0.708

1.323

2.072

2.076

3.841

5.024

6.635

7.879

10.828

參考公式及數(shù)據(jù):K2=

【答案】(1)

優(yōu)秀

非優(yōu)秀

總計(jì)

甲班

10

45

55

乙班

20

30

50

合計(jì)

30

75

105

; (2)按95%的可能性要求,可以認(rèn)為“成績(jī)與班級(jí)有關(guān)系”.

【解析】

1)根據(jù)隨機(jī)抽取1人為優(yōu)秀的概率為,得出優(yōu)秀的總?cè)藬?shù),從而得出乙班優(yōu)秀人數(shù),同時(shí)也能得出甲班非優(yōu)秀的人數(shù),其余數(shù)據(jù)進(jìn)而可求;

2)根據(jù)公式K2=,求出相關(guān)指數(shù)的值,然后進(jìn)行對(duì)比臨界值,即可得出結(jié)果.

解:(1)優(yōu)秀人數(shù)為105×=30,

∴乙班優(yōu)秀人數(shù)為30-10=20(人),

甲班非優(yōu)秀人數(shù)為105-30-30=45(人),

故列聯(lián)表如下:

優(yōu)秀

非優(yōu)秀

總計(jì)

甲班

10

45

55

乙班

20

30

50

合計(jì)

30

75

105

(2)根據(jù)列聯(lián)表中的數(shù)據(jù),

所以若按95%的可能性要求,可以認(rèn)為“成績(jī)與班級(jí)有關(guān)系”.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某次考試結(jié)束,甲、乙、丙三位同學(xué)聚在一起聊天.甲說(shuō):“你們的成績(jī)都沒(méi)有我高”乙說(shuō):“我的成績(jī)一定比丙高 ”丙說(shuō):“你們的成績(jī)都比我高 ”成績(jī)公布后,三人成績(jī)互不相同且三人中恰有一人說(shuō)得不對(duì),若將三人成績(jī)從高到低排序,則甲排在第______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,圓錐PO中,AB是圓O的直徑,且AB4,C是底面圓O上一點(diǎn),且AC2,點(diǎn)D為半徑OB的中點(diǎn),連接PD.

1)求證:PC在平面APB內(nèi)的射影是PD;

2)若PA4,求底面圓心O到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知從1開(kāi)始的連續(xù)奇數(shù)蛇形排列形成寶塔形數(shù)表,第一行為1,第二行為3,5,第三行為7,9,11,第四行為13,15,17,19,…,如圖所示,在寶塔形數(shù)表中位于第行、第列的數(shù)記為,比如,.若,則______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】研究函數(shù)的定義域、奇偶性、單調(diào)性和最值,并作出它的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在下列各題中,用符號(hào),連起來(lái).

1實(shí)數(shù)滿足;

2,;

3,;

4是偶數(shù),是偶數(shù)(其中,都是整數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的多面體中,平面平面,四邊形為邊長(zhǎng)為2的菱形, 為直角梯形,四邊形為平行四邊形,且, , .

(1)若 分別為, 的中點(diǎn),求證: 平面;

(2)若, 與平面所成角的正弦值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,且兩個(gè)坐標(biāo)系取相等的長(zhǎng)度單位.已知直線的參數(shù)方程為 (為參數(shù)),曲線的參數(shù)方程為 (為參數(shù)),曲線的極坐標(biāo)方程為.

(1)求曲線的公共點(diǎn)的極坐標(biāo);

(2)若為曲線上的一個(gè)動(dòng)點(diǎn),求到直線的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知冪函數(shù)滿足

1)求函數(shù)的解析式;

2)若函數(shù),是否存在實(shí)數(shù)使得的最小值為0?若存在,求出的值;若不存在,說(shuō)明理由;

3)若函數(shù),是否存在實(shí)數(shù),使函數(shù)上的值域?yàn)?/span>?若存在,求出實(shí)數(shù)的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案