(本題滿分13分)如圖,分別過橢圓:左右焦點、的動直線相交于點,與橢圓分別交于不同四點,直線的斜率、、、滿足.已知當(dāng)軸重合時,,.
(1)求橢圓的方程;
(2)是否存在定點,使得為定值.若存在,求出點坐標(biāo)并求出此定值,若不存在,說明理由.
(1) (2)M、N坐標(biāo)分別為;為定值
解析試題分析:(1)由已知條件推導(dǎo)出|AB|=2a=2,|CD|=,由此能求出橢圓E的方程.
(2)焦點F1、F2坐標(biāo)分別為(-1,0),(1,0),當(dāng)直線l1或l2斜率不存在時,P點坐標(biāo)為(-1,0)或(1,0),當(dāng)直線l1,l2斜率存在時,設(shè)斜率分別為m1,m2,設(shè)A(x1,y1),B(x2,y2),由,得(2+3m12)x2+6m12x+3m12?6=0,由此利用韋達(dá)定理結(jié)合題設(shè)條件能推導(dǎo)出存在點M,N其坐標(biāo)分別為(0,-1)、(0,1),使得|PM|+|PN|為定值2.
(1)當(dāng)l1與x軸重合時,,即, 2分
∴l(xiāng)2垂直于x軸,得,,(4分)
得,, ∴橢圓E的方程為. 5分
(2)焦點、坐標(biāo)分別為(—1,0)、(1,0).
當(dāng)直線l1或l2斜率不存在時,P點坐標(biāo)為(—1,0)或(1,0). 6分
當(dāng)直線l1、l2斜率存在時,設(shè)斜率分別為,,設(shè),,
由得:,
∴,.(7分)
,
同理. 9分
∵,∴,即.
由題意知, ∴.
設(shè),則,即, 11分
由當(dāng)直線l1或l2斜率不存在時,P點坐標(biāo)為(—1,0)或(1,0)也滿足此方程,
∴點橢圓上, 12分
∴存在點M、N其坐標(biāo)分別為,使得為定值. 13分
考點:直線與圓錐曲線的綜合問題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知曲線上的點到點的距離比它到直線的距離小2.
(1)求曲線的方程;
(2)曲線在點處的切線與軸交于點.直線分別與直線及軸交于點,以為直徑作圓,過點作圓的切線,切點為,試探究:當(dāng)點在曲線上運動(點與原點不重合)時,線段的長度是否發(fā)生變化?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,已知橢圓的焦點在軸上,離心率為,且經(jīng)過點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2) 以橢圓的長軸為直徑作圓,設(shè)為圓上不在坐標(biāo)軸上的任意一點,為軸上一點,過圓心作直線的垂線交橢圓右準(zhǔn)線于點.問:直線能否與圓總相切,如果能,求出點的坐標(biāo);如果不能,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)(2011•福建)如圖,直線l:y=x+b與拋物線C:x2=4y相切于點A.
(Ⅰ)求實數(shù)b的值;
(Ⅱ)求以點A為圓心,且與拋物線C的準(zhǔn)線相切的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓過點,兩個焦點為,.
(1)求橢圓的方程;
(2),是橢圓上的兩個動點,如果直線的斜率與的斜率互為相反數(shù),證明直線的斜率為定值,并求出這個定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點是橢圓上任一點,點到直線的距離為,到點的距離為,且.直線與橢圓交于不同兩點、(,都在軸上方),且.
(1)求橢圓的方程;
(2)當(dāng)為橢圓與軸正半軸的交點時,求直線方程;
(3)對于動直線,是否存在一個定點,無論如何變化,直線總經(jīng)過此定點?若存在,求出該定點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線的方程為,直線的方程為,點關(guān)于直線的對稱點在拋物線上.
(1)求拋物線的方程;
(2)已知,點是拋物線的焦點,是拋物線上的動點,求的最小值及此時點的坐標(biāo);
(3)設(shè)點、是拋物線上的動點,點是拋物線與軸正半軸交點,是以為直角頂點的直角三角形.試探究直線是否經(jīng)過定點?若經(jīng)過,求出定點的坐標(biāo);若不經(jīng)過,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線的焦點為,點是拋物線上的一點,且其縱坐標(biāo)為4,.
(1)求拋物線的方程;
(2) 設(shè)點是拋物線上的兩點,的角平分線與軸垂直,求的面積最大時直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(2011•浙江)已知拋物線C1:x2=y,圓C2:x2+(y﹣4)2=1的圓心為點M
(1)求點M到拋物線C1的準(zhǔn)線的距離;
(2)已知點P是拋物線C1上一點(異于原點),過點P作圓C2的兩條切線,交拋物線C1于A,B兩點,若過M,P兩點的直線l垂直于AB,求直線l的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com