分析 由已知中x1,x2是方程x2+ax+b=0(x∈R)的兩個(gè)根,可得:x1+x2=-a,x1•x2=b,且a2-4b≥0,結(jié)合x(chóng)12+x22=1,可得:b=f(a)=$\frac{1}{2}$a2-$\frac{1}{2}$,a∈[-$\sqrt{2}$,$\sqrt{2}$],結(jié)合二次函數(shù)的圖象和性質(zhì),可得答案.
解答 解:由x1,x2是方程x2+ax+b=0(x∈R)的兩個(gè)根,
∴x1+x2=-a,x1•x2=b,且a2-4b≥0,
∴x12+x22=(x1+x2)2-2x1•x2=a2-2b=1,
∴b=f(a)=$\frac{1}{2}$a2-$\frac{1}{2}$,且a2-2≤0,即a∈[-$\sqrt{2}$,$\sqrt{2}$]
當(dāng)a=0時(shí),f(a)的最小值為-$\frac{1}{2}$,
當(dāng)a=±$\sqrt{2}$時(shí),f(a)的最大值為$\frac{1}{2}$.
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是根與系數(shù)的關(guān)系,二次函數(shù)的圖象和性質(zhì),難度中檔.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 15 | B. | 16 | C. | 17 | D. | 18 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{13}{16}$ | B. | $\frac{13}{243}$ | C. | $\frac{6}{243}$ | D. | $\frac{80}{243}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com