18.在如圖所示的程序框圖中,若輸出的S值等于16,則在該程序框圖中的判斷框內(nèi)填寫的條件為( 。
A.i>5B.i>6C.i>7D.i>8

分析 由已知中的程序框圖可知:該程序的功能是利用循環(huán)結(jié)構(gòu)計(jì)算并輸出變量S的值,模擬程序的運(yùn)行過程,分析循環(huán)中各變量值的變化情況,可得答案.

解答 解:第一次執(zhí)行循環(huán)體后,S=2,i=2,不滿足輸出條件,
再次執(zhí)行循環(huán)體后,S=4,i=3,不滿足輸出條件,
再次執(zhí)行循環(huán)體后,S=7,i=4,不滿足輸出條件,
再次執(zhí)行循環(huán)體后,S=11,i=5,不滿足輸出條件,
再次執(zhí)行循環(huán)體后,S=16,i=6,滿足輸出條件,
故程序框圖中的判斷框內(nèi)填寫的條件為i>5,
故選:A.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是程序框圖,當(dāng)循環(huán)的次數(shù)不多,或有規(guī)律時(shí),常采用模擬循環(huán)的方法解答.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.在直角三角形ABC中,∠C=$\frac{π}{2}$,AB=2,AC=1,若$\overrightarrow{AD}$=$\frac{3}{2}$$\overrightarrow{AB}$,則$\overrightarrow{CD}$•$\overrightarrow{CB}$=$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)直線l:kx-y+1=0與圓C:x2+y2=4相較于A、B兩點(diǎn),$\overrightarrow{OM}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$,且點(diǎn)M在圓C上,則實(shí)數(shù)k等于(  )
A.1B.2C.-1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知函數(shù)y=log${\;}_{\frac{1}{2}}$(ax2+2x+1)的值域?yàn)閤+2y+4=4xy,則實(shí)數(shù)a的取值范圍是[0,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知A={x|2x2<3x,x∈R},B={x|x-1>0,x∈R},則A∩B=( 。
A.(0,1)B.$(0,\frac{3}{2})$C.$(\frac{2}{3},2)$D.$(1,\frac{3}{2})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.(Ⅰ)以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,并在兩種坐標(biāo)系中取相同的長(zhǎng)度單位已知直線的極坐標(biāo)方程為θ=$\frac{π}{4}$(ρ∈R),它與曲線$\left\{\begin{array}{l}{x=2+\sqrt{5cos}θ}\\{y=1+\sqrt{5sin}θ}\end{array}\right.$(θ為參數(shù))相交于兩點(diǎn)A和B,求|AB|;
(Ⅱ)已知極點(diǎn)與原點(diǎn)重合,極軸與x軸正半軸重合,若直線C1的極坐標(biāo)方程為:ρcos(θ-$\frac{π}{4}$),曲線C2的參數(shù)方程為:$\left\{\begin{array}{l}{x=1+cosθ}\\{y=3+sinθ}\end{array}\right.$(θ為參數(shù)),試求曲線C2關(guān)于直線C1對(duì)稱的曲線的直角坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知M1={第一象限角},M2={銳角},M3={0°~90°的角},M4={小于90°的角},則下面結(jié)論正確的是( 。
A.M1=M2=M3=M4B.M1?M2?M3?M4C.M1⊆M2⊆M3⊆M4D.M1?M2,M2=M3⊆M4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知復(fù)數(shù)Z=x+yi(x,y∈R)與復(fù)數(shù)1+2i,-2+i,-1-2i在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)構(gòu)成平行四邊形,求Z的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=$\frac{x({a}^{x}-1)}{{a}^{x}+1}$(a>0,a≠1),則(  )
A.函數(shù)f(x)在(0,+∞)上是增函數(shù)B.函數(shù)f(x)在(0,+∞)上是減函數(shù)
C.函數(shù)f(x)是奇函數(shù)D.函數(shù)f(x)是偶函數(shù)

查看答案和解析>>

同步練習(xí)冊(cè)答案