精英家教網 > 高中數學 > 題目詳情

【題目】已知過拋物線的焦點,斜率為的直線交拋物線于兩點,且.

(1)求該拋物線的方程;

(2) 為坐標原點,為拋物線上一點,若,求的值.

【答案】(1)y2=8x.(2)λ=0,或λ=2.

【解析】試題分析:第一問求拋物線的焦點弦長問題可直接利用焦半徑公式,先寫出直線的方程,再與拋物線的方程聯(lián)立方程組,設而不求,利用根與系數關系得出,然后利用焦半徑公式得出焦點弦長公式,求出弦長,第二問根據聯(lián)立方程組解出的A、B兩點坐標,和向量的坐標關系表示出點C的坐標,由于點C在拋物線上滿足拋物線方程,求出參數值.

試題解析:

(1)直線AB的方程是y=2(x-2),與y2=8x聯(lián)立,消去yx2-5x4=0,

由根與系數的關系得x1x25.由拋物線定義得|AB|=x1x2p=9,

(2)由x2-5x+4=0,得x1=1,x2=4,從而A(1,-2),B(4,4).

=(x3y3)=(1,-2)+λ(4,4)=(4λ+1,4λ-2),

y=8x3,即[2(2λ-1)]2=8(4λ+1),即(2λ-1)2=4λ+1,

解得λ=0或λ=2.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】若bm為數列{2n}中不超過Am3(m∈N*)的項數,2b2=b1+b5且b3=10,則正整數A的值為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】海水養(yǎng)殖場進行某水產品的新、舊網箱養(yǎng)殖方法的產量對比,收獲時各隨機抽取了100個網箱,測量各箱水產品的產量(單位:kg), 其頻率分布直方圖如下:

(1)記A表示事件“舊養(yǎng)殖法的箱產量低于50 kg”,估計A的概率;

(2)填寫下面列聯(lián)表,并根據列聯(lián)表判斷是否有99%的把握認為箱產量與養(yǎng)殖方法有關:

箱產量<50 kg

箱產量≥50 kg

舊養(yǎng)殖法

新養(yǎng)殖法

(3)根據箱產量的頻率分布直方圖,對這兩種養(yǎng)殖方法的優(yōu)劣進行比較.

附:

P

0.050 0.010 0.001

k

3.841 6.635 10.828

.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數,其中.已知

(Ⅰ)求

(Ⅱ)將函數的圖象上各點的橫坐標伸長為原來的倍(縱坐標不變),再將得到的圖象向左平移個單位,得到函數的圖象,求上的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在多面體ABCDE中,DB⊥平面ABC,AE∥DB,且△ABC為等邊三角形,AE=1,BD=2,CD與平面ABCDE所成角的正弦值為

(1)若F是線段CD的中點,證明:EF⊥平面DBC;
(2)求二面角D﹣EC﹣B的平面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=ax2+bx+c(a>0,b∈R,c∈R).

(1)若函數f(x)的最小值是f(﹣1)=0,且c=1,求f (2)的值;

(2)若a=1,c=0,且|f(x)|≤1在區(qū)間(0,1]上恒成立,試求b的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示為某幾何體形狀的紙盒的三視圖,在此紙盒內放一個小正四面體,若小正四面體在紙盒內可以任意轉動,則小正四面體的棱長的最大值為(

A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點,點為平面上動點,過點作直線的垂線,垂足為,且.

(1)求動點的軌跡方程;

(2)過點的直線與軌跡交于兩點,在處分別作軌跡的切線交于點,設直線的斜率分別為,求證:為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】選修4﹣1:幾何證明選講
如圖,已知PA是⊙O的切線,A是切點,直線PO交⊙O于B、C兩點,D是OC的中點,連接AD并延長交⊙O于點E,若PA=2 ,∠APB=30°.

(1)求∠AEC的大;
(2)求AE的長.

查看答案和解析>>

同步練習冊答案