【題目】如果一個多項式的系數(shù)都是自然數(shù),則稱為“自然多項式”.對正整數(shù),用表示滿足的不同自然多項式的個數(shù).證明:.
【答案】見解析
【解析】
首先證明:對任何正整數(shù),有. ①
事實上,對任何滿足的自然多項式,因為奇數(shù),所以,的常數(shù)項為奇數(shù).令.則是自然多項式,且.
反之,對任何滿足的自然多項式,令.則是自然多項式,且.
所以,.
對任何滿足的自然多項式,若,令,則是自然多項式,且,這樣的多項式有個;若
,令,則是自然多項式,且,故,這樣的多項式有個.
所以,.
式①成立.
其次證明:對任何正整數(shù),有. ②
由式①可知,不減,且對,有
.
特別地,令,有.
故.
式②的右邊獲證.
取整數(shù),使.
則.
取自然數(shù)組(),使,這樣的數(shù)組()有個.
對每個這樣的數(shù)組,再取,其中,,令,則,且,有.
從而,是自然多項式.因此,.
故式②的左邊獲證.
由式②有.
令,得.
對任意的正整數(shù),設.則,.
又由不減可知,.
則.
令,,得.
科目:高中數(shù)學 來源: 題型:
【題目】已知中心在原點的雙曲線的右焦點為,右頂點為.
(1)求雙曲線的方程;
(2)若直線與雙曲線恒有兩個不同的交點和,且(其中為坐標原點),求實數(shù)取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列五個命題:
①若為真命題,則為真命題;
②命題“,有”的否定為“,有”;
③“平面向量與的夾角為鈍角”的充分不必要條件是“”;
④在銳角三角形中,必有;
⑤為等差數(shù)列,若,則
其中正確命題的個數(shù)為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓中心在原點,焦點在坐標軸上,直線與橢圓在第一象限內(nèi)的交點是,點在軸上的射影恰好是橢圓的右焦點,橢圓另一個焦點是,且.
(1)求橢圓的方程;
(2)設過點的直線與交于點(不在軸上),垂直于的直線與交于點,與軸交于點.若,且,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平行六面體ABCD—A1B1C1D1中,AB=AC,平面BB1C1C⊥底面ABCD,點M、F分別是線段AA1、BC的中點.
(1)求證:AF⊥DD1;
(2)求證:AF∥平面MBC1.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在數(shù)列{an},{bn}中,a1=2,b1=4,且an,bn,an+1成等差數(shù)列,bn,an+1,bn+1成等比數(shù)列{n∈N+}.
求a2,a3,a4及b2,b3,b4,由此猜測{an},{bn}的通項公式,并證明你的結(jié)論;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知梯形中,,,,四邊形為矩形,,平面平面.
(Ⅰ)求證:平面;
(Ⅱ)求平面與平面所成二面角的正弦值;
(Ⅲ)若點在線段上,且直線與平面所成角的正弦值為,求線段的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解人們對于國家新頒布的“生育二胎放開”政策的熱度,現(xiàn)在某市進行調(diào)查,隨機調(diào)查了人,他們年齡的頻數(shù)分布及支持“生育二胎”人數(shù)如下表:
年齡 | [5,15) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) |
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
支持“生 育二胎” | 4 | 5 | 12 | 8 | 2 | 1 |
(1)由以上統(tǒng)計數(shù)據(jù)填下面2乘2列聯(lián)表,并問是否有99的把握認為以45歲為分界點對“生育二胎放開”政策的支持度有差異:
年齡不低于45歲的人數(shù) | 年齡低于45歲的人數(shù) | 合計 | |
支持 | a= | c= | |
不支持 | b= | d= | |
合計 |
(2)若對年齡在的被調(diào)查人中隨機選取兩人進行調(diào)查,恰好這兩人都支持“生育二胎放開”的概率是多少?
參考數(shù)據(jù):P
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com