一個(gè)口袋中裝有大小相同的n個(gè)紅球(n≥5且n∈N)和5個(gè)白球,一次摸獎(jiǎng)從中摸兩個(gè)球,兩個(gè)球的顏色不同則為中獎(jiǎng).
(I)試用n表示一次摸獎(jiǎng)中獎(jiǎng)的概率p;
(II)記從口袋中三次摸獎(jiǎng)(每次摸獎(jiǎng)后放回)恰有一次中獎(jiǎng)的概率為m,用p表示恰有一次中獎(jiǎng)的概率m,求m的最大值及m取最大值時(shí)p、n的值;
(III)當(dāng)n=15時(shí),將15個(gè)紅球全部取出,全部作如下標(biāo)記:記上i號(hào)的有i個(gè)(i=1,2,3,4),共余的紅球記上0號(hào).并將標(biāo)號(hào)的15個(gè)紅球放人另一袋中,現(xiàn)從15個(gè)紅球的袋中任取一球,ξ表示所取球的標(biāo)號(hào),求ξ的分布列、期望和方差.
分析:(I)計(jì)算出從n+5個(gè)球中任取兩個(gè)的方法數(shù)和其中兩個(gè)球的顏色不同的方法,由古典概型公式,代入數(shù)據(jù)得到一次摸獎(jiǎng)中獎(jiǎng)的概率;
(II)求出三次摸獎(jiǎng)中(每次摸獎(jiǎng)后放回)恰有一次中獎(jiǎng)的概率,利用導(dǎo)數(shù)確定函數(shù)的單調(diào)性,即可求出其最大值及相應(yīng)的p值;
(III)記上0號(hào)的有5個(gè)紅球,從中任取一球,有15種取法,它們是等可能的,確定變量的取值,求出相應(yīng)的概率,可得ξ的分布列、期望和方差.
解答:解:(I)一次摸獎(jiǎng)從n+5個(gè)球中任取兩個(gè),有Cn+52種方法,它們是等可能的,其中兩個(gè)球的顏色不同的方法有Cn1C51種,
∴一次摸獎(jiǎng)中獎(jiǎng)的概率P=
C
1
n
C
1
5
C
2
n+5
=
10n
(n+5)(n+4)

(II)設(shè)每次摸獎(jiǎng)中獎(jiǎng)的概率為p(0<p<1),三次摸獎(jiǎng)中(每次摸獎(jiǎng)后放回)恰有一次中獎(jiǎng)的概率是
m=
C
1
3
p(1-p)2
=3p3-6p2+3p(0<p<1)
求導(dǎo)數(shù)可得m′=3(p-1)(3p-1)
∴函數(shù)在(0,
1
3
)上為增函數(shù),在(
1
3
,1)上為減函數(shù)
∴p=
1
3
時(shí),即
10n
(n+5)(n+4)
=
1
3
,即n=20時(shí),mmax=
4
9
;
(III)記上0號(hào)的有5個(gè)紅球,從中任取一球,有15種取法,它們是等可能的
故ξ的分布列是
ξ 0 1 2 3 4
P
1
3
1
15
2
15
1
5
4
15
∴Eξ=0×
1
3
+1×
1
15
+2×
2
15
+3×
1
5
+4×
4
15
=2
Dξ=(0-2)2×
1
3
+(1-2)2×
1
15
+(2-2)2×
2
15
+(3-2)2×
1
5
+(4-2)2×
4
15
=
8
3
點(diǎn)評(píng):本題考查概率知識(shí),考查學(xué)生的計(jì)算能力,求離散型隨機(jī)變量期望的步驟:①確定離散型隨機(jī)變量的取值;②寫出分布列,并檢查分布列的正確與否,即看一下所有概率的和是否為1;③求出期望.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)口袋中裝有大小相同的2個(gè)白球和3個(gè)黑球,從中摸出一個(gè)球,放回后再摸出一個(gè)球,則兩次摸出的球恰好顏色不同的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•惠州模擬)一個(gè)口袋中裝有大小相同的2個(gè)白球和4個(gè)黑球.
(1)采取放回抽樣方式,從中摸出兩個(gè)球,求兩球恰好顏色不同的概率;
(2)采取不放回抽樣方式,從中摸出兩個(gè)球,求摸得白球的個(gè)數(shù)的期望和方差.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)口袋中裝有大小相同的8個(gè)白球和7個(gè)黑球,從中任意摸出2個(gè)球,則摸出的2個(gè)球至少有一個(gè)是白球的概率是
86
105
86
105
(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•孝感模擬)一個(gè)口袋中裝有大小相同的n個(gè)紅球(n≥5且n∈N)和5個(gè)白球,一次摸獎(jiǎng)從中摸兩個(gè)球,兩個(gè)球的顏色不同則為中獎(jiǎng).
(1)記三次摸獎(jiǎng)(每次摸獎(jiǎng)后放回)恰有一次中獎(jiǎng)的概率為P.試問當(dāng)n等于多少時(shí),P的值最大?
(2)在(1)的條件下,將5個(gè)白球全部取出后,對(duì)剩下的n個(gè)紅球全部作如下標(biāo)記:記上i號(hào)的有i個(gè)(i=1,2,3,4),其余的紅球記上0號(hào),現(xiàn)從袋中任取一球.ξ表示所取球的標(biāo)號(hào),求ξ的分布列,期望和方差.

查看答案和解析>>

同步練習(xí)冊(cè)答案